ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Kardiologiia

Advanced search

Association of AGT, ACE, NOS3, TNF, MMP9, CYBA polymorphism with subclinical arterial wall changes

https://doi.org/10.18087/cardio.2021.3.n1212

Abstract

Aim    Activation of the renin-angiotensin-aldosterone system, decreased nitric oxide production, chronic inflammation, and oxidative stress result in subclinical changes in the arterial wall, which favor the development of cardiovascular diseases (CVD). The effect of allelic gene variants that encode the proteins participating in pathogenetic pathways of age-associated diseases with subclinical changes in the arterial wall [increased pulse wave velocity (PWV), increased intima-media thickness, endothelial dysfunction (ED), presence of atherosclerotic plaques (ASP)] are understudied. This study analyzed the relationship between AGT, ACE, NOS3 TNF, MMP9, and CYBA gene polymorphism and the presence of subclinical changes in the arterial wall, including the dependence on risk factors for CVD, in arbitrarily healthy people of various age.
Material and methods    The relationship of polymorphisms с.521С>Т of AGT gene, Ins>Del of AСE gene, с.894G>T of NOS3 gene, – 238G>A of TNF gene, – 1562С>T of MMP9 gene, and c.214Т>С of CYBA gene with indexes of changes in the arterial wall and risk factors for CVD was studied in 160 arbitrarily healthy people by building models of multiple logistic regression and also by analyzing frequencies of co-emergence of two signs with the Pearson chi-squared test (χ2) and Fisher exact test.
Results    The DD-genotype of Ins>Del ACE gene polymorphism was correlated with increased PWV (p=0.006; odds ratio (OR) =3.41, 95 % confidence interval (CI): 1.48–8.67) and ED (p=0.014; OR=2.60, 95 % CI: 1.22–5.68). The GG genotype of с.894G>T NOS3 gene polymorphism was correlated with ED (p=0.0087; OR=2.65, 95 % CI: 1.26–5.72); the ТТ-genotype of с.894G>T NOS3 gene polymorphism was correlated with ASP (p=0.033; OR=0.034, 95 % CI: 0.001–0.549).
Conclusion    Polymorphic variants of AСE and NOS3 genes correlated with ED, increased arterial wall stiffness, and the presence of subclinical changes in the arterial wall.

About the Authors

A. A. Akopyan
Medical Research and Educational Center of the M.V. Lomonosov Moscow State University, Moscow, Russia
Russian Federation

MD, Research intern at the Department of Age-related diseases, Medical Scientific and Educational Center of Lomonosov Moscow State University



K. I. Kirillova
Medical Research and Educational Center of the M.V. Lomonosov Moscow State University, Moscow, Russia
Russian Federation

MD, Researcher at Medical Laboratory Department, Medical Scientific and Educational Center of Lomonosov Moscow State University.



I. D. Strazhesko
Medical Research and Educational Center of the M.V. Lomonosov Moscow State University, Moscow, Russia Russian Clinical and Research Center of Gerontology, Pirogov Russian National Research Medical University
Russian Federation

MD, PhD, Deputy Director of translational medicine, Russian Gerontology Research Center of Pirogov Russian National Research Medical University, Leading Researcher at the Department of Age-related diseases, Medical Scientific and Educational Center of Lomonosov Moscow State University.



L. M. Samokhodskaya
Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia
Russian Federation

MD, PhD, Associate Professor, Head of Medical Laboratory Department, Medical Scientific and Educational Center of Lomonosov Moscow State University.



Ya. A. Orlova
Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia
Russian Federation

MD, PhD, Professor, Head of the Department of Age-associated diseases, Medical Scientific and Educational Center of Lomonosov Moscow State University.



References

1. Nilsson P. Early vascular aging (EVA): consequences and prevention. Vascular Health and Risk Management. 2008;4(3):547–52. DOI: 10.2147/VHRM.S1094

2. Strazhesko ID, Tkacheva ON, Akasheva DU, Dudinskaya EN, Plokhova EV, Pykhtina VS et al. Growth Hormone, Insulin-Like Growth Factor-1, Insulin Resistance, and Leukocyte Telomere Length as Determinants of Arterial Aging in Subjects Free of Cardiovascular Diseases. Frontiers in Genetics. 2017; 8:198. DOI: 10.3389/fgene.2017.00198

3. Gomez-Sanchez M, Gomez-Sanchez L, Patino-Alonso MC, Cunha PG, Recio-Rodriguez JI, Alonso-Dominguez R et al. Vascular aging and its relationship with lifestyles and other risk factors in the general Spanish population: Early Vascular Ageing Study. Journal of Hypertension. 2020;38(6):1110–22. DOI: 10.1097/HJH.0000000000002373

4. Yang W, Lu J, Yang L, Zhang J. Association of Matrix Metalloproteinase-9 Gene -1562C/T Polymorphism with Essential Hypertension: A Systematic Review and Meta-Analysis Article. Iranian Journal of Public Health. 2015;44(11):1445–52. PMID: 26744701

5. Abouelfath R, Habbal R, Laaraj A, Khay K, Harraka M, Nadifi S. ACE insertion/deletion polymorphism is positively associated with resistant hypertension in Morocco. Gene. 2018; 658:178–83. DOI: 10.1016/j.gene.2018.03.028

6. Luo J-Q, Wen J-G, Zhou H-H, Chen X-P, Zhang W. Endothelial Nitric Oxide Synthase Gene G894T Polymorphism and Myocardial Infarction: A Meta-Analysis of 34 Studies Involving 21068 Subjects. PLoS ONE. 2014;9(1): e87196. DOI: 10.1371/journal.pone.0087196

7. Cheng Y, An B, Jiang M, Xin Y, Xuan S. Association of Tumor Necrosis Factor-alpha Polymorphisms and Risk of Coronary Artery Disease in Patients with Non-alcoholic Fatty Liver Disease. Hepatitis Monthly. 2015;15(3): e26818. DOI: 10.5812/hepatmon.26818

8. Xu Q, Yuan F, Shen X, Wen H, Li W, Cheng B et al. Polymorphisms of C242T and A640G in CYBA Gene and the Risk of Coronary Artery Disease: A Meta-Analysis. PLoS ONE. 2014;9(1):e84251. DOI: 10.1371/journal.pone.0084251

9. Rai H, Parveen F, Kumar S, Kapoor A, Sinha N. Association of Endothelial Nitric Oxide Synthase Gene Polymorphisms with Coronary Artery Disease: An Updated Meta-Analysis and Systematic Review. PLoS ONE. 2014;9(11):e113363. DOI: 10.1371/journal.pone.0113363

10. Buraczynska K, Kurzepa J, Ksiazek A, Buraczynska M, Rejdak K. Matrix Metalloproteinase-9 (MMP-9) Gene Polymorphism in Stroke Patients. NeuroMolecular Medicine. 2015;17(4):385–90. DOI: 10.1007/s12017-015-8367-5

11. Isordia-Salas I, Santiago-Germán D, Cerda-Mancillas MC, Hernández-Juárez J, Bernabe-García M, Leaños-Miranda A et al. Gene polymorphisms of angiotensin-converting enzyme and angiotensinogen and risk of idiopathic ischemic stroke. Gene. 2019;688: 163–70. DOI: 10.1016/j.gene.2018.11.080

12. Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Research. 2002;30(10):e47. DOI: 10.1093/nar/30.10.e47

13. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of Cardiovascular Events and All-Cause Mortality with Arterial Stiffness: a systematic review and meta-analysis. Journal of the American College of Cardiology. 2010;55(13):1318–27. DOI: 10.1016/j.jacc.2009.10.061

14. Zhong Q, Hu M-J, Cui Y-J, Liang L, Zhou M-M, Yang Y-W et al. Carotid–Femoral Pulse Wave Velocity in the Prediction of Cardiovascular Events and Mortality: An Updated Systematic Review and Meta-Analysis. Angiology. 2018;69(7):617–29. DOI: 10.1177/0003319717742544

15. Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin- aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomedicine & Pharmacotherapy. 2017; 94:317–25. DOI: 10.1016/j.biopha.2017.07.091

16. Rigat B, Hubert C, Corvol P, Soubrier R. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1). Nucleic Acids Research. 1992;20(6):1433. DOI: 10.1093/nar/20.6.1433-a

17. Marcus Y, Shefer G, Stern N. Adipose tissue renin–angiotensin–aldosterone system (RAAS) and progression of insulin resistance. Molecular and Cellular Endocrinology. 2013;378(1–2):1–14. DOI: 10.1016/j.mce.2012.06.021

18. Manrique C, Lastra G, Gardner M, Sowers JR. The Renin Angiotensin Aldosterone System in Hypertension: Roles of Insulin Resistance and Oxidative Stress. Medical Clinics of North America. 2009;93(3):569–82. DOI: 10.1016/j.mcna.2009.02.014

19. Aroor AR, DeMarco VG, Jia G, Sun Z, Nistala R, Meininger GA et al. The Role of Tissue Renin-Angiotensin-Aldosterone System in the Development of Endothelial Dysfunction and Arterial Stiffness. Frontiers in Endocrinology. 2013;4:161. DOI: 10.3389/fendo.2013.00161

20. Zieman SJ, Melenovsky V, Kass DA. Mechanisms, Pathophysiology, and Therapy of Arterial Stiffness. Arteriosclerosis, Thrombosis, and Vascular Biology. 2005;25(5):932–43. DOI: 10.1161/01.ATV.0000160548.78317.29

21. Barhoumi T, Kasal DA, Li MW, Shbat L, Laurant P, Neves MF et al. T Regulatory Lymphocytes Prevent Angiotensin II–Induced Hypertension and Vascular Injury. Hypertension. 2011;57(3):469– 76. DOI: 10.1161/HYPERTENSIONAHA.110.162941

22. Strazhesko I.D., Akasheva D.U., Dudinskaya E.N., Tkacheva O.N. Vascular ageing: main symptoms and mechanisms. Cardiovascular Therapy and Prevention. 2012;11(4):93–100. DOI: 10.15829/1728-8800-2012-4-93-100

23. Cheng H-M, Park S, Huang Q, Hoshide S, Wang J-G, Kario K et al. Vascular aging and hypertension: Implications for the clinical application of central blood pressure. International Journal of Cardiology. 2017; 230:209–13. DOI: 10.1016/j.ijcard.2016.12.170

24. Nilsson PM. Early Vascular Aging in Hypertension. Frontiers in Cardiovascular Medicine. 2020; 7:6. DOI: 10.3389/fcvm.2020.00006

25. Logan JG, Engler MB, Kim H. Genetic Determinants of Arterial Stiffness. Journal of Cardiovascular Translational Research. 2015;8(1):23–43. DOI: 10.1007/s12265-014-9597-x

26. Yuan H, Wang X, Xia Q, Ge P, Wang X, Cao X. Angiotensin converting enzyme (I/D) gene polymorphism contributes to ischemic stroke risk in Caucasian individuals: a meta-analysis based on 22 case-control studies. International Journal of Neuroscience. 2015;126(6):488–98. DOI: 10.3109/00207454.2015.1036421

27. Bhatti GK, Bhatti JS, Vijayvergiya R, Singh B. Implications of ACE (I/D) Gene Variants to the Genetic Susceptibility of Coronary Artery Disease in Asian Indians. Indian Journal of Clinical Biochemistry. 2017;32(2):163–70. DOI: 10.1007/s12291-016-0588-3

28. Hussain M, Awan FR, Gujjar A, Hafeez S, Islam M. A case control association study of ACE gene polymorphism (I/D) with hypertension in Punjabi population from Faisalabad, Pakistan. Clinical and Experimental Hypertension. 2018;40(2):186–91. DOI: 10.1080/10641963.2017.1356842

29. Malueka RG, Dwianingsih EK, Sutarni S, Bawono RG, Bayuangga HF, Gofir A et al. The D allele of the angiotensin- converting enzyme (ACE) insertion/deletion (I/D) polymorphism is associated with worse functional outcome of ischaemic stroke. International Journal of Neuroscience. 2018;128(8):697–704. DOI: 10.1080/00207454.2017.1412962

30. Krishnan R, Sekar D, karunanithy S, Subramanium S. Association of angiotensin converting enzyme gene insertion/deletion polymorphism with essential hypertension in south Indian population. Genes & Diseases. 2016;3(2):159–63. DOI: 10.1016/j.gendis.2016.03.001

31. Strazhesko I.D., Tkacheva O.N. Cellular mechanisms of morphological and functional changes of the arterial wall with age and the role of statin therapy in the prevention. Kardiologiia. 2015;55(7):89–96.

32. Tousoulis D, Kampoli A-M, Tentolouris Nikolaos Papageorgiou C, Stefanadis C. The Role of Nitric Oxide on Endothelial Function. Current Vascular Pharmacology. 2012;10(1):4–18. DOI: 10.2174/157016112798829760

33. Zhao Y, Vanhoutte PM, Leung SWS. Vascular nitric oxide: Beyond eNOS. Journal of Pharmacological Sciences. 2015;129(2):83–94. DOI: 10.1016/j.jphs.2015.09.002

34. Meza CA, La Favor JD, Kim D-H, Hickner RC. Endothelial Dysfunction: Is There a Hyperglycemia-Induced Imbalance of NOX and NOS? International Journal of Molecular Sciences. 2019;20(15):3775. DOI: 10.3390/ijms20153775

35. El Dayem SM, Battah AA, El Bohy AEM, Ahmed S, Hamed M, El Fattah SNA. Nitric Oxide Gene Polymorphism is a Risk Factor for Diabetic Nephropathy and Atherosclerosis in Type 1 Diabetic Patients. Macedonian Journal of Medical Sciences. 2019;7(19):3132–8. DOI: 10.3889/oamjms.2019.831

36. Corapcioglu D, Sahin M, Emral R, Celebi ZK, Sener O, Gedik VT. Association of the G894T Polymorphism of the Endothelial Nitric Oxide Synthase Gene with Diabetic Foot Syndrome Foot Ulcer, Diabetic Complications, and Comorbid Vascular Diseases: A Turkish Case–Control Study. Genetic Testing and Molecular Biomarkers. 2010;14(4):483–8. DOI: 10.1089/gtmb.2010.0023

37. Johns R, Chen Z-F, Young L, Delacruz F, Chang N-T, Yu C et al. Meta-Analysis of NOS3 G894T Polymorphisms with Air Pollution on the Risk of Ischemic Heart Disease Worldwide. Toxics. 2018;6(3):44. DOI: 10.3390/toxics6030044

38. ALrefai AA, Habib MSE, Yaseen RI, Gabr MK, Habeeb RM. Association of endothelial nitric oxide synthase (eNOS) gene G894T polymorphism with hypertension risk and complications. Molecular and Cellular Biochemistry. 2016;421(1–2):103–10. DOI: 10.1007/s11010-016-2790-2

39. Campedelli FL, e Silva KSF, Rodrigues DA, Martins JVM, Costa IR, Lagares MH et al. Polymorphism of the gene eNOS G894T (Glu298Asp) in symptomatic patients with aterosclerosis. Genetics and Molecular Research. 2017;16(2). DOI: 10.4238/gmr16029550

40. Srivastava P, Badhwar S, Chandran DS, Jaryal AK, Jyotsna VP, Deepak KK. Imbalance between Angiotensin II - Angiotensin (1-7) system is associated with vascular endothelial dysfunction and inflammation in type 2 diabetes with newly diagnosed hypertension. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2019;13(3):2061–8. DOI: 10.1016/j.dsx.2019.04.042

41. Konukoglu D, Uzun H. Endothelial Dysfunction and Hypertension. Advances in Experimental Medicine and Biology. 2017; 956:511–40. DOI: 10.1007/5584_2016_90

42. Gimbrone MA, García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circulation Research. 2016;118(4):620–36. DOI: 10.1161/CIRCRESAHA.115.306301

43. Johnson CT, Brewster LP. Carotid Artery Intima-Media Thickness and the Renin-Angiotensin System. Hospital Practice. 2013;41(2):54–61. DOI: 10.3810/hp.2013.04.1026

44. Wu S-S, Kor C-T, Chen T-Y, Liu K-H, Shih K-L, Su W-W et al. Relationships between Serum Uric Acid, Malondialdehyde Levels, and Carotid Intima-Media Thickness in the Patients with Metabolic Syndrome. Oxidative Medicine and Cellular Longevity. 2019; 2019:6859757. DOI: 10.1155/2019/6859757

45. Seyedsadjadi N, Berg J, Bilgin AA, Grant R. A Pilot Study Providing Evidence for a Relationship between a Composite Lifestyle Score and Risk of Higher Carotid Intima-Media Thickness: Is There a Link to Oxidative Stress? Oxidative Medicine and Cellular Longevity. 2018; 2018:4504079. DOI: 10.1155/2018/4504079

46. Dudinskaya E.N., Tkacheva O.N., Shestakova M.V., Brailova N.V., Strazhesko I.D., Akasheva D.U. et al. Telomere length and vascular wall in patients with Type 2 Diabetes Mellitus. Diabetes mellitus. 2014;17(3):31–8. DOI: 10.14341/DM2014331-38

47. Zhou Y-Y, Qiu H-M, Yang Y, Han Y-Y. Analysis of risk factors for carotid intima-media thickness in patients with type 2 diabetes mellitus in Western China assessed by logistic regression combined with a decision tree model. Diabetology & Metabolic Syndrome. 2020;12(1):8. DOI: 10.1186/s13098-020-0517-8

48. Watanabe K, Ouchi M, Ohara M, Kameda W, Susa S, Oizumi T et al. Change of carotid intima-media thickness is associated with age in elderly Japanese patients without a history of cardiovascular disease. Geriatrics & Gerontology International. 2015;15(8):1023–30. DOI: 10.1111/ggi.12402

49. Paternoster L, Martinez-Gonzalez NA, Charleton R, Chung M, Lewis S, Sudlow CLM. Genetic Effects on Carotid Intima- Media Thickness: Systematic Assessment and Meta-Analyses of Candidate Gene Polymorphisms Studied in More Than 5000 Subjects. Circulation: Cardiovascular Genetics. 2010;3(1):15–21. DOI: 10.1161/CIRCGENETICS.108.834366

50. Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of Clinical Cardiovascular Events with Carotid Intima- Media Thickness: A Systematic Review and Meta-Analysis. Circulation. 2007;115(4):459–67. DOI: 10.1161/CIRCULATIONAHA.106.628875

51. Wang W-Z. Association between T174M polymorphism in the angiotensinogen gene and risk of coronary artery disease: a meta-analysis. Journal of geriatric cardiology: JGC. 2013;10(1):59–65. DOI: 10.3969/j.issn.1671-5411.2013.01.010

52. Inaba Y, Chen JA, Bergmann SR. Carotid plaque, compared with carotid intima-media thickness, more accurately predicts coronary artery disease events: A meta-analysis. Atherosclerosis. 2012;220(1):128–33. DOI: 10.1016/j.atherosclerosis.2011.06.044

53. Fernández-Friera L, Fuster V, López-Melgar B, Oliva B, SánchezGonzález J, Macías A et al. Vascular Inflammation in Subclinical Atherosclerosis Detected by Hybrid PET/MRI. Journal of the American College of Cardiology. 2019;73(12):1371–82. DOI: 10.1016/j.jacc.2018.12.075

54. Husain K. Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. World Journal of Biological Chemistry. 2015;6(3):209–17. DOI: 10.4331/wjbc.v6.i3.209


Supplementary files

1. Дополнительные материалы
Subject
Type Исследовательские инструменты
Download (129KB)    
Indexing metadata ▾

Review

For citations:


Akopyan A.A., Kirillova K.I., Strazhesko I.D., Samokhodskaya L.M., Orlova Ya.A. Association of AGT, ACE, NOS3, TNF, MMP9, CYBA polymorphism with subclinical arterial wall changes. Kardiologiia. 2021;61(3):57-65. https://doi.org/10.18087/cardio.2021.3.n1212

Views: 1233


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)