ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Morphological and Molecular-Biological Changes in the Coronary Arteries after Stenting

https://doi.org/10.18087/cardio.2021.7.n1211

Abstract

This review addresses morphological changes in coronary arteries following stenting, which result from damage to the vascular wall. These changes include 1) formation of a thrombus in the site of intimal injury; 2) inflammation; 3) proliferation and migration of smooth muscle cells; 4) formation of extracellular matrix. Each of these pathological processes has specific morpho-biological features. The review shows the role of von Willebrand factor in development of early thrombosis after intimal injury, which provokes activation of the inflammatory response followed by proliferation of smooth muscle cell that synthetize the extracellular matrix. These cellular and intercellular changes are based on overexpression of TGF-β1 protein, which facilitates modulation of various types of smooth muscle cells, including contractile and secretory ones. Issues of fine regulation of cellular and intercellular interactions by apoptosis, activation of mTOR signaling molecules, and microRNA are still understudied. Dynamic changes in drug-coated stents during development of neoatherosclerosis and late thrombosis remain not elucidated. Current reports show that initial mechanisms triggering pathological regenerative and hyperplastic processes that result in coronary restenosis in the area of implanted stents may form early (first hours or days) after stenting. Most studies were performed on experimental rather than on autopsy material, which does not allow fully unbiased interpretation of obtained data. Studying dynamics of morphological and molecular changes in coronary arteries after stenting, including on autopsy material, will allow one to express an opinion on the risk of postoperative thrombosis and restenosis.

About the Authors

S. S. Todorov
Rostov State Medical University of the Ministry of Health of Russia, Rostov-on-Don
Russian Federation

Head of the Morphological Department, doctor of Medical Sciences, pathologist of the highest category



V. J. Deribas
Rostov State Medical University of the Ministry of Health of Russia, Rostov-on-Don
Russian Federation

Head of the Department of Pathological Anatomy, pathologist of the highest category, аssistant of the Department of Pathological Anatomy



A. S. Kazmin
Rostov State Medical University of the Ministry of Health of Russia, Rostov-on-Don
Russian Federation

pathologist of the highest category, аssistant of the Department of Pathological Anatomy



S. S. Todorov (jr.)
Rostov State Medical University of the Ministry of Health of Russia, Rostov-on-Don
Russian Federation

 student of the Faculty of Medicine



References

1. World Health Organization. Global status report on noncommunicable diseases 2014. -Geneva: World Health Organization;2014. - 302 p. [Av. at: http://apps.who.int/iris/bitstream/10665/148114/1/9789241564854_eng.pdf]. ISBN 978-92-4-156485-4

2. Ministry of Health of Russian Federation. Federal project ‘Fight against cardiovascular diseases’. Av. at: https://www.rosminzdrav.ru/poleznye-resursy/natsproektzdravoohranenie/bssz. 2019.

3. Cutlip DE, Windecker S, Mehran R, Boam A, Cohen DJ, van Es G-A et al. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation. 2007;115(17):2344–51. DOI: 10.1161/CIRCULATIONAHA.106.685313

4. Lowe HC, Oesterle SN, Khachigian LM. Coronary in-stent restenosis: Current status and future strategies. Journal of the American College of Cardiology. 2002;39(2):183–93. DOI: 10.1016/S0735-1097(01)01742-9

5. Otsuka F, Byrne RA, Yahagi K, Mori H, Ladich E, Fowler DR et al. Neoatherosclerosis: overview of histopathologic findings and implications for intravascular imaging assessment. European Heart Journal. 2015;36(32):2147–59. DOI: 10.1093/eurheartj/ehv205

6. Pelliccia F, Cianfrocca C, Rosano G, Mercuro G, Speciale G, Pasceri V. Role of Endothelial Progenitor Cells in Restenosis and Progression of Coronary Atherosclerosis After Percutaneous Coronary Intervention: a prospective study. JACC: Cardiovascular Interventions. 2010;3(1):78–86. DOI: 10.1016/j.jcin.2009.10.020

7. Finn AV, Kolodgie FD, Harnek J, Guerrero LJ, Acampado E, Tefera K et al. Differential Response of Delayed Healing and Persistent Inflammation at Sites of Overlapping Sirolimus - or Paclitaxel-Eluting Stents. Circulation. 2005;112(2):270–8. DOI: 10.1161/CIRCULATIONAHA.104.508937

8. Weinbaum S, Tarbell JM, Damiano ER. The Structure and Function of the Endothelial Glycocalyx Layer. Annual Review of Biomedical Engineering. 2007;9(1):121–67. DOI: 10.1146/annurev.bioeng.9.060906.151959

9. Sadler JE. Biochemistry and genetics of von Willebrand Factor. Annual Review of Biochemistry. 1998;67(1):395–424. DOI: 10.1146/annurev.biochem.67.1.395

10. Levi M, van der Poll T, Büller HR. Bidirectional Relation Between Inflammation and Coagulation. Circulation. 2004;109(22):2698–704. DOI: 10.1161/01.CIR.0000131660.51520.9A

11. Freedman JE. CD40-CD40L and Platelet Function: Beyond Hemostasis. Circulation Research. 2003;92(9):944–6. DOI: 10.1161/01.RES.0000074030.98009.FF

12. Farb A, Kolodgie FD, Hwang J-Y, Burke AP, Tefera K, Weber DK et al. Extracellular matrix changes in stented human coronary arteries. Circulation. 2004;110(8):940–7. DOI: 10.1161/01.CIR.0000139337.56084.30

13. Behrendt D, Ganz P. Endothelial function. From vascular biology to clinical applications. The American Journal of Cardiology. 2002;90(10):40L-48L. DOI: 10.1016/S0002-9149(02)02963-6

14. Inoue T, Croce K, Morooka T, Sakuma M, Node K, Simon DI. Vascular Inflammation and Repair: implications for re-endothelialization, restenosis, and stent thrombosis. JACC: Cardiovascular Interventions. 2011;4(10):1057–66. DOI: 10.1016/j.jcin.2011.05.025

15. Speidl WS, Katsaros KM, Kastl SP, Zorn G, Huber K, Maurer G et al. Coronary late lumen loss of drug eluting stents is associated with increased serum levels of the complement components C3a and C5a. Atherosclerosis. 2010;208(1):285–9. DOI: 10.1016/j.atherosclerosis.2009.07.030

16. Welt FGP, Rogers C. Inflammation and Restenosis in the Stent Era. Arteriosclerosis, Thrombosis, and Vascular Biology. 2002;22(11):1769–76. DOI: 10.1161/01.ATV.0000037100.44766.5B

17. Li J-J, Ren Y, Chen K-J, Yeung AC, Xu B, Ruan X-M et al. Impact of C-reactive protein on in-stent restenosis: a meta-analysis. Texas Heart Institute Journal. 2010;37(1):49–57. PMID: 20200627

18. Wang C-H, Li S-H, Weisel RD, Fedak PWM, Dumont AS, Szmitko P et al. C-Reactive Protein Upregulates Angiotensin Type 1 Receptors in Vascular Smooth Muscle. Circulation. 2003;107(13):1783–90. DOI: 10.1161/01.CIR.0000061916.95736.E5

19. Hansrani M, Gillespie JI, Stansby G. Homocysteine in Myointimal Hyperplasia. European Journal of Vascular and Endovascular Surgery. 2002;23(1):3–10. DOI: 10.1053/ejvs.2001.1526

20. Simon DI, Chen Z, Xu H, Li CQ, Dong J, McIntire LV et al. Platelet Glycoprotein Ibα Is a Counterreceptor for the Leukocyte Integrin Mac-1 (Cd11b/Cd18). Journal of Experimental Medicine. 2000;192(2):193–204. DOI: 10.1084/jem.192.2.193

21. Todorov S.S. Smooth myocytes in the pathology of the cardiovascular system. Russian journal of cardiology. 2009;14(5):91–4.

22. Moiseeva EP. Adhesion receptors of vascular smooth muscle cells and their functions. Cardiovascular Research. 2001;52(3):372–86. DOI: 10.1016/S0008-6363(01)00399-6

23. Gorenne I, Kavurma M, Scott S, Bennett M. Vascular smooth muscle cell senescence in atherosclerosis. Cardiovascular Research. 2006;72(1):9–17. DOI: 10.1016/j.cardiores.2006.06.004

24. Fattori R, Piva T. Drug-eluting stents in vascular intervention. The Lancet. 2003;361(9353):247–9. DOI: 10.1016/S0140-6736(03)12275-1

25. Pickering JG, Ford CM, Chow LH. Evidence for Rapid Accumulation and Persistently Disordered Architecture of Fibrillar Collagen in Human Coronary Restenosis Lesions. The American Journal of Cardiology. 1996;78(6):633–7. DOI: 10.1016/S0002-9149(96)00384-0

26. Pels K, Labinaz M, Hoffert C, O’Brien ER. Adventitial Angiogenesis Early After Coronary Angioplasty: Correlation With Arterial Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology. 1999;19(2):229–38. DOI: 10.1161/01.ATV.19.2.229

27. Spiel AO, Gilbert JC, Jilma B. Von Willebrand Factor in Cardiovascular Disease: Focus on Acute Coronary Syndromes. Circulation. 2008;117(11):1449–59. DOI: 10.1161/CIRCULATIONAHA.107.722827

28. Hu L, Huang Z, Ishii H, Wu H, Suzuki S, Inoue A et al. PLF‐1 (Proliferin‐1) Modulates Smooth Muscle Cell Proliferation and Development of Experimental Intimal Hyperplasia. Journal of the American Heart Association. 2019;8(24):e005886. DOI: 10.1161/JAHA.117.005886

29. Wang Z, Zhu H, Shi H, Zhao H, Gao R, Weng X et al. Exosomes derived from M1 macrophages aggravate neointimal hyperplasia following carotid artery injuries in mice through miR-222/CDKN1B/CDKN1C pathway. Cell Death & Disease. 2019;10(6):422. DOI: 10.1038/s41419-019-1667-1

30. Yang J, Fan Z, Yang J, Ding J, Yang C, Chen L. MicroRNA-24 Attenuates Neointimal Hyperplasia in the Diabetic Rat Carotid Artery Injury Model by Inhibiting Wnt4 Signaling Pathway. International Journal of Molecular Sciences. 2016;17(6):765. DOI: 10.3390/ijms17060765

31. Feng S, Gao L, Zhang D, Tian X, Kong L, Shi H et al. MiR-93 regulates vascular smooth muscle cell proliferation, and neointimal formation through targeting Mfn2. International Journal of Biological Sciences. 2019;15(12):2615–26. DOI: 10.7150/ijbs.36995

32. Liu S, Yang Y, Jiang S, Xu H, Tang N, Lobo A et al. MiR-378a-5p Regulates Proliferation and Migration in Vascular Smooth Muscle Cell by Targeting CDK1. Frontiers in Genetics. 2019;10:22. DOI: 10.3389/fgene.2019.00022

33. Li L, Mao D, Li C, Li M. miR-145-5p Inhibits Vascular Smooth Muscle Cells (VSMCs) Proliferation and Migration by Dysregulating the Transforming Growth Factor-b Signaling Cascade. Medical Science Monitor. 2018;24:4894–904. DOI: 10.12659/MSM.910986

34. Wang D, Atanasov AG. The microRNAs Regulating Vascular Smooth Muscle Cell Proliferation: A Minireview. International Journal of Molecular Sciences. 2019;20(2):324. DOI: 10.3390/ijms20020324

35. Khan R, Agrotis A, Bobik A. Understanding the role of transforming growth factor-β1 in intimal thickening after vascular injury. Cardiovascular Research. 2007;74(2):223–34. DOI: 10.1016/j.cardiores.2007.02.012

36. Digay A.M. On the question of the antiproliferative coating of coronary stents. Circulation pathology and cardiac surgery. 2018;22(2):22–9. DOI: 10.21688/1681-3472-2018-2-22-29

37. Corrigendum to: 2018 ESC/EACTS Guidelines on myocardial revascularization. European Heart Journal. 2019;40(37):3096. DOI: 10.1093/eurheartj/ehz507

38. Byrne RA, Joner M, Kastrati A. Stent thrombosis and restenosis: what have we learned and where are we going? The Andreas Grüntzig Lecture ESC 2014. European Heart Journal. 2015;36(47):3320–31. DOI: 10.1093/eurheartj/ehv511

39. Nakano M, Otsuka F, Yahagi K, Sakakura K, Kutys R, Ladich ER et al. Human autopsy study of drug-eluting stents restenosis: histomorphological predictors and neointimal characteristics. European Heart Journal. 2013;34(42):3304–13. DOI: 10.1093/eurheartj/eht241

40. Byrne RA, Joner M, Tada T, Kastrati A. Restenosis in bare metal and drug-eluting stents: distinct mechanistic insights from histopathology and optical intravascular imaging. Minerva Cardioangiologica. 2012;60(5):473–89. PMID: 23018428

41. Otsuka F, Joner M, Prati F, Virmani R, Narula J. Clinical classification of plaque morphology in coronary disease. Nature Reviews Cardiology. 2014;11(7):379–89. DOI: 10.1038/nrcardio.2014.62

42. Joner M, Nakazawa G, Finn AV, Quee SC, Coleman L, Acampado E et al. Endothelial Cell Recovery Between Comparator Polymer-Based Drug-Eluting Stents. Journal of the American College of Cardiology. 2008;52(5):333–42. DOI: 10.1016/j.jacc.2008.04.030

43. Nakazawa G, Nakano M, Otsuka F, Wilcox JN, Melder R, Pruitt S et al. Evaluation of Polymer-Based Comparator Drug-Eluting Stents Using a Rabbit Model of Iliac Artery Atherosclerosis. Circulation: Cardiovascular Interventions. 2011;4(1):38–46. DOI: 10.1161/CIRCINTERVENTIONS.110.957654

44. Otsuka F, Finn AV, Yazdani SK, Nakano M, Kolodgie FD, Virmani R. The importance of the endothelium in atherothrombosis and coronary stenting. Nature Reviews Cardiology. 2012;9(8):439–53. DOI: 10.1038/nrcardio.2012.64

45. Guagliumi G, Farb A, Musumeci G, Valsecchi O, Tespili M, Motta T et al. Sirolimus-Eluting Stent Implanted in Human Coronary Artery for 16 Months: Pathological Findings. Circulation. 2003;107(9):1340–1. DOI: 10.1161/01.CIR.0000062700.42060.6F

46. Todorov S.S. The Role of Smooth Myocytes and Macrophages in Development of Complicated Forms of Arterial Atherosclerosis. Kardiologiia. 2019;59(1):57–61. DOI: 10.18087/cardio.2019.1.10207


Review

For citations:


Todorov S.S., Deribas V.J., Kazmin A.S., Todorov (jr.) S.S. Morphological and Molecular-Biological Changes in the Coronary Arteries after Stenting. Kardiologiia. 2021;61(7):79-84. (In Russ.) https://doi.org/10.18087/cardio.2021.7.n1211

Views: 1263


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)