ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Kardiologiia

Advanced search

QT Interval in Patients With COVID-19

https://doi.org/10.18087/cardio.2020.7.n1201

Abstract

Since the first case recorded in the end of 2019, the virus SARS-CоV-2 and the related lung disease COVID-19 have spread over the world and became a threat for public health. The drugs used for treatment of this disease (azithromycin and hydroxychloroquine) can prolong the QT interval on the electrocardiogram to increase the risk of pirouette tachycardia and sudden cardiac death. This article presents a review of potential risks related with the drug treatment of COVID-19 and provides recommendations for management of patients during the pandemic.

About the Authors

V. N. Komoliatova
Center for syncope and cardiac arrhythmias in children and adolescents of the FMBA of Russia. FGBUZ Central Children's Clinical Hospital FMBA of Russia. Department of Pediatrics named after G.N. Speransky RMANPO Ministry of Health of the Russian Federation
Russian Federation
Medical  doctor of Center for syncope and cardiac arhythmias in children and adolescents FMBA of Russia, Central children clinical Hospital of FMBA of Russia, Professor Department of Pediatrics of the Russian Academy of Postgraduate Education of the Ministry of Health of the Russian Federation


L. M. Makarov
Center for syncope and cardiac arrhythmias in children and adolescents of the FMBA of Russia. FGBUZ Central Children's Clinical Hospital FMBA of Russia. Department of Pediatrics named after G.N. Speransky RMANPO Ministry of Health of the Russian Federation
Russian Federation
Chief of Center for syncope and cardiac arhythmias in children and adolescents FMBA of Russia, Central children clinical Hospital of FMBA of Russia, Professor Department of Pediatrics of the Russian Academy of Postgraduate Education of the Ministry of Health of the Russian Federation


References

1. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–9. DOI: 10.1001/jama.2020.1585

2. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J et al. Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine. 2020;382(18):1708–20. DOI: 10.1056/NEJMoa2002032

3. Oudit GY, Kassiri Z, Jiang C, Liu PP, Poutanen SM, Penninger JM et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. European Journal of Clinical Investigation. 2009;39(7):618–25. DOI: 10.1111/j.1365-2362.2009.02153.x

4. Zheng Y-Y, Ma Y-T, Zhang J-Y, Xie X. COVID-19 and the cardiovascular system. Nature Reviews Cardiology. 2020;17(5):259–60. DOI: 10.1038/s41569-020-0360-5

5. Ferrari R, Di Pasquale G, Rapezzi C. 2019 CORONAVIRUS: What are the implications for cardiology? European Journal of Preventive Cardiology. 2020;27(8):793–6. DOI: 10.1177/2047487320918102

6. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus– induced lung injury. Nature Medicine. 2005;11(8):875–9. DOI: 10.1038/nm1267

7. Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin. European Heart Journal. 2020;ehaa190. [Epub ahead of print]. DOI: 10.1093/eurheartj/ehaa190

8. Wu C, Hu X, Song J, Du C, Xu J, Yang D et al. Heart injury signs are associated with higher and earlier mortality in coronavirus disease 2019 (COVID-19). Av.at: http://medrxiv.org/lookup/doi/10.1101/2020.02.26.20028589 [DOI: 10.1101/2020.02.26.20028589]. 2020.

9. Wu C-I, Postema PG, Arbelo E, Behr ER, Bezzina CR, Napolitano C et al. SARS-CoV-2, COVID-19, and inherited arrhythmia syndromes. Heart Rhythm. 2020;S154752712030285X. [Epub ahead of print]. DOI: 10.1016/j.hrthm.2020.03.024

10. Ministry of Health of Russian Federation. Temporary methodical recommendations. Prevention, diagnosis and treatment of new coronavirus infection (COVID-2019). Version 6 (28.04.2020). Av. at: https://стопкоронавирус.рф/ai/doc/194/attach/28042020_mR_COVID-19_v6.pdf. 2020.

11. Chen C-Y, Wang F-L, Lin C-C. Chronic Hydroxychloroquine Use Associated with QT Prolongation and Refractory Ventricular Arrhythmia. Clinical Toxicology. 2006;44(2):173–5. DOI: 10.1080/15563650500514558

12. Morgan ND, Patel SV, Dvorkina O. Suspected Hydroxychloroquine-Associated QT-Interval Prolongation in a Patient With Systemic Lupus Erythematosus: Journal of Clinical Rheumatology. 2013;19(5):286–8. DOI: 10.1097/RHU.0b013e31829d5e50

13. O’Laughlin JP, Mehta PH, Wong BC. Life Threatening Severe QTc Prolongation in Patient with Systemic Lupus Erythematosus due to Hydroxychloroquine. Case Reports in Cardiology. 2016;2016:4626279. DOI: 10.1155/2016/4626279

14. Haeusler IL, Chan XHS, Guérin PJ, White NJ. The arrhythmogenic cardiotoxicity of the quinoline and structurally related antimalarial drugs: a systematic review. BMC Medicine. 2018;16(1):200. DOI: 10.1186/s12916-018-1188-2

15. World Health Organization. The cardiotoxicity of antimalarials. WHO Evidence Review Group Meeting, 13–14 October 2016 Varembé Conference Centre, Geneva, Switzerland. 2017. [Av. at: https://www.who.int/malaria/mpac/mpac-mar2017-erg-cardiotoxicity-report-session2.pdf]

16. Jankelson L, Karam G, Becker ML, Chinitz LA, Tsai M-C. QT prolongation, torsades de pointes, and sudden death with short courses of chloroquine or hydroxychloroquine as used in COVID-19: A systematic review. Heart Rhythm. 2020;S1547-5271(20)30431-8. [Epub ahead of print]. DOI: 10.1016/j.hrthm.2020.05.008

17. Choi Y, Lim H-S, Chung D, Choi J, Yoon D. Risk Evaluation of Azithromycin-Induced QT Prolongation in Real-World Practice. BioMed Research International. 2018;2018:1574806. DOI: 10.1155/2018/1574806

18. Sears SP, Getz TW, Austin CO, Palmer WC, Boyd EA, Stancampiano FF. Incidence of Sustained Ventricular Tachycardia in Patients with Prolonged QTc After the Administration of Azithromycin: A Retrospective Study. Drugs - Real World Outcomes. 2016;3(1):99–105. DOI: 10.1007/s40801-016-0062-9

19. Huang B-H, Wu C-H, Hsia C-P, Yin Chen C. Azithromycin-Induced Torsade De Pointes. Pacing and Clinical Electrophysiology. 2007;30(12):1579–82. DOI: 10.1111/j.1540-8159.2007.00912.x

20. Kezerashvili A, Khattak H, Barsky A, Nazari R, Fisher JD. Azithromycin as a cause of QT-interval prolongation and torsade de pointes in the absence of other known precipitating factors. Journal of Interventional Cardiac Electrophysiology. 2007;18(3):243–6. DOI: 10.1007/s10840-007-9124-y

21. Ray WA, Murray KT, Hall K, Arbogast PG, Stein CM. Azithromycin and the Risk of Cardiovascular Death. New England Journal of Medicine. 2012;366(20):1881–90. DOI: 10.1056/NEJMoa1003833 22. Kim MH, Berkowitz C, Trohman RG. Polymorphic Ventricular Tachycardia with a Normal QT Interval Following Azithromycin. Pacing and Clinical Electrophysiology. 2005;28(11):1221–2. DOI: 10.1111/j.1540-8159.2005.50146.x

22. Yang Z, Prinsen JK, Bersell KR, Shen W, Yermalitskaya L, Sidorova T et al. Azithromycin Causes a Novel Proarrhythmic Syndrome. Circulation: Arrhythmia and Electrophysiology. 2017;10(4):e003560. DOI: 10.1161/CIRCEP.115.003560

23. Zhang M, Xie M, Li S, Gao Y, Xue S, Huang H et al. Electrophysiologic Studies on the Risks and Potential Mechanism Underlying the Proarrhythmic Nature of Azithromycin. Cardiovascular Toxicology. 2017;17(4):434–40. DOI: 10.1007/s12012-017-9401-7

24. Capel RA, Herring N, Kalla M, Yavari A, Mirams GR, Douglas G et al. Hydroxychloroquine reduces heart rate by modulating the hyperpolarization-activated current If: Novel electrophysiological insights and therapeutic potential. Heart Rhythm. 2015;12(10):2186–94. DOI: 10.1016/j.hrthm.2015.05.027

25. Chorin E, Dai M, Shulman E, Wadhwani L, Bar-Cohen R, Barbhaiya C et al. The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin. Nature Medicine. 2020; [Epub ahead of print]. DOI: 10.1038/s41591-020-0888-2

26. Roden DM, Harrington RA, Poppas A, Russo AM. Considerations for Drug Interactions on QTc Interval in Exploratory COVID-19 Treatment. Heart Rhythm. 2020;S1547527120303477. [Epub ahead of print]. DOI: 10.1016/j.hrthm.2020.04.016

27. Mitra RL, Greenstein SA, Epstein LM. An algorithm for managing QT prolongation in coronavirus disease 2019 (COVID-19) patients treated with either chloroquine or hydroxychloroquine in conjunction with azithromycin: Possible benefits of intravenous lidocaine. HeartRhythm Case Reports. 2020;6(5):244–8. DOI: 10.1016/j.hrcr.2020.03.016

28. Makarov L.M., Komoliatova V.N., Kiseleva I.I., Besportochnii D.A., Dmitrieva A.V., Akopian A.G. et al. Long QT syndrome – disease with high risk of sudden death. -M.: Medpraktika-M;2018. - 22 p. ISBN 978-5-98803-402-5

29. Postema P, Wilde A. The Measurement of the QT Interval. Current Cardiology Reviews. 2014;10(3):287–94. DOI: 10.2174/1573403X10666140514103612


Review

For citations:


Komoliatova V.N., Makarov L.M. QT Interval in Patients With COVID-19. Kardiologiia. 2020;60(7):11-14. (In Russ.) https://doi.org/10.18087/cardio.2020.7.n1201

Views: 2135


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)