ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

ECG changes in COVID-19

https://doi.org/10.18087/cardio.2020.8.n1192

Abstract

Aim      To evaluate changes in 12-lead ECG in patients with coronavirus infection.

Materials and methods This article describes signs of electrocardiographic right ventricular “stress” in patients with COVID-19. 150 ECGs of 75 COVID-19 patients were analyzed in the Institute of Cardiology of the National Medical Research Centre for Therapy and Preventive Medicine. The diagnosis was based on the clinical picture of community-acquired pneumonia, data of chest multispiral computed tomography, and a positive test for COVID-19. ECG was recorded both in 3-6 and in 12 leads. Signs of right ventricular (RV) stress, so-called systolic overload (high R and inverted TV1–3 and TII, III, aVF), and diastolic overload (RV wall hypertrophy and cavity dilatation; complete or incomplete right bundle branch block) were evaluated.

Results The most common signs for impaired functioning of the right heart include emergence of the RV P wave phase (41.3 %), incomplete right bundle branch block (42.6 %), ECG of the SIQ IIITIII type (33.3 %) typical for thromboembolic complications, and signs of RV hypertrophy, primarily increased SV5–6 (14.7 %). These changes are either associated with signs of RV myocardial stress (16 %) or appear on the background of signs for diffuse hypoxia evident as tall, positive, sharp-ended T waves in most leads (28 %).

Conclusion      A conclusive, comprehensive assessment of the reversal of hemodynamic disorders and electrocardiographic dynamics in patients with COVID-19 will be possible later, when more data become available.

About the Author

G. V. Ryabykina
National Medical Research Center for Cardiology, Moscow, Russia
Russian Federation
Doctor of Medical Sciences, Professor. Chief Researcher, ECG Laboratory


References

1. Ministry of Health of Russian Federation. Temporary guidelines of the Ministry of health of the Russian Federation “Prevention, diagnosis and treatment of new coronavirus infection (COVID-19)”. Version 3. (03.03.2020). Moscow. Av. at: https://www.garant.ru/ products/ipo/prime/doc/73647088/. 2020.

2. Gautret P, Lagier J-C, Parola P, Hoang VT, Meddeb L, Mailhe M et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents. 2020;105949. [Epub ahead of print]. DOI: 10.1016/j.ijantimicag.2020.105949

3. Cheung CC, Davies B, Gibbs K, Laksman ZW, Krahn AD. Multi-lead QT Screening is Necessary for QT Measurement: Implications for Management of Patients in the COVID-19 Era. JACC: Clinical Electrophysiology. 2020;S2405500X20302504. [Epub ahead of print]. DOI: 10.1016/j.jacep.2020.04.001

4. Ryabykina G.V., Blinova E.V., Sakhnova T.A. Electrovectorcardiographic diagnosis. In “Pulmonary Hypertension” ed. I.Ye. Chazova, T.V. Martynyuk. - M.: Publishing House Praktika. 2015;155–188. ISBN 978-5-89816-138-5]

5. Beresten N.F., Sandrikov V.A., Fedorova S.I. Functional diagnostics. National guidelines. Chapter 2. -M.: GEOTAR-Media;2019. –784 p. ISBN 978-5-9704-4242-5

6. Tomov L., Tomov I. Heart rhythm disturbances. -M.: Medicine and physical education;1976. - 390 p.

7. Yan G-X, Antzelevitch C. Cellular Basis for the Brugada Syndrome and Other Mechanisms of Arrhythmogenesis Associated With ST-Segment Elevation. Circulation. 1999;100(15):1660–6. DOI: 10.1161/01.CIR.100.15.1660

8. Alings M, Wilde A. “Brugada” Syndrome: Clinical Data and Suggested Pathophysiological Mechanism. Circulation. 1999;99(5):666–73. DOI: 10.1161/01.CIR.99.5.666

9. Gussak I, Antzelevitch C, Bjerregaard P, Towbin J, Chaitman B. The Brugada syndrome: clinical, electrophysiologic and genetic aspects. Journal of the American College of Cardiology. 1999;33(1):5– 15. DOI: 10.1016/S0735-1097(98)00528-2

10. Zhang J, Sacher F, Hoffmayer K, O’Hara T, Strom M, Cuculich P et al. Cardiac Electrophysiological Substrate Underlying the ECG Phenotype and Electrogram Abnormalities in Brugada Syndrome Patients. Circulation. 2015;131(22):1950–9. DOI: 10.1161/CIRCULATIONAHA.114.013698

11. Frustaci A, Priori SG, Pieroni M, Chimenti C, Napolitano C, Rivolta I et al. Cardiac Histological Substrate in Patients With Clinical Phenotype of Brugada Syndrome. Circulation. 2005;112(24):3680–7. DOI: 10.1161/CIRCULATIONAHA.105.520999

12. Coronel R, Casini S, Koopmann TT, Wilms-Schopman FJG, Verkerk AO, de Groot JR et al. Right Ventricular Fibrosis and Conduction Delay in a Patient With Clinical Signs of Brugada Syndrome: A Combined Electrophysiological, Genetic, Histopathologic, and Computational Study. Circulation. 2005;112(18):2769–77. DOI: 10.1161/CIRCULATIONAHA.105.532614

13. Takagi M. Localized right ventricular morphological abnormalities detected by electron-beam computed tomography represent arrhythmogenic substrates in patients with the Brugada syndrome. European Heart Journal. 2001;22(12):1032–41. DOI: 10.1053/euhj.2000.2424

14. Chang D, Saleh M, Garcia-Bengo Y, Choi E, Epstein L, Willner J. COVID-19 Infection Unmasking Brugada Syndrome. HeartRhythm Case Reports. 2020;6(5):237–40. DOI: 10.1016/j.hrcr.2020.03.012

15. Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up. Journal of the American College of Cardiology. 2020;75(23):2950–73. DOI: 10.1016/j.jacc.2020.04.031


Review

For citations:


Ryabykina G.V. ECG changes in COVID-19. Kardiologiia. 2020;60(8):16-22. https://doi.org/10.18087/cardio.2020.8.n1192

Views: 8901


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)