ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Multifactor predictive model in patients with myocardial infarction based on modern biomarkers

https://doi.org/10.18087/cardio.2020.3.2593

Abstract

Objective To study the prognostic role of current serum biomarkers in patients with myocardial infarction (MI) by constructing a multifactorial model for prediction of cardiovascular complications (CVC) in remote MI. Acute coronary syndrome is a major cause of death and disability in the Russian Federation. Introduction of current biomarkers, such as N-terminal pro-brain natriuretic peptide, stimulating growth factor (ST2), and centraxin-2 (Pentraxin, Ptx-3), provides more possibilities for diagnostics and calculation of risk for CVC.

Materials and Methods Concentrations of biomarkers were measured in 180 patients with MI (mean age, 61.4±1.7) upon admission. At one year, specific and composite endpoints were determined (MI, acute cerebrovascular disease, admission for CVD, and cardiovascular death). Based on this information, a prognostic model for subsequent events was developed.

Results A mathematical model was created for computing the development of a composite endpoint. In this model, the biomarkers NT-proBNP, Ptx-3 and, to a lesser extent, ST2 demonstrated their prognostic significance in diagnosis of CVC with a sensitivity of 78.79 % and specificity of 86.67 % (area under the curve, AUC 0.73).

Conclusion In patients with remote MI, the biomarkers NT-proBNP, ST2, and Ptx-3 improve prediction of CVC.

About the Authors

A. F. Khamitova
Bashkir State Medical University
Russian Federation
Ufa


I. A. Lakman
Ufa State Aviation Technical University
Russian Federation
Ufa


R. R. Akhmetvaleev
Ufa State Aviation Technical University
Russian Federation
Ufa


E. L. Tulbaev
Bashkir State Medical University Municipal Clinical Hospital #21
Russian Federation
Ufa


D. F. Gareeva
Bashkir State Medical University
Russian Federation
Ufa


Sh. Z. Zagidullin
ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Russian Federation


N. Sh. Zagidullin
ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России ГБУЗ РБ «Городская клиническая больница № 21»
Russian Federation


References

1. Januzzi JL, Peacock WF, Maisel AS, Chae CU, Jesse RL, Baggish AL, et al. Measurement of the Interleukin Family Member ST2 in Patients With Acute Dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. Journal of the American College of Cardiology. 2007;50(7):607–13. DOI: 10.1016/j.jacc.2007.05.014

2. Suzuki S, Takeishi Y, Niizeki T, Koyama Y, Kitahara T, Sasaki T et al. Pentraxin 3, a new marker for vascular inflammation, predicts adverse clinical outcomes in patients with heart failure. American Heart Journal. 2008;155(1):75–81. DOI: 10.1016/j.ahj.2007.08.013

3. Matsubara J, Sugiyama S, Nozaki T, Sugamura K, Konishi M, Ohba K et al. Pentraxin 3 Is a New Inflammatory Marker Correlated With Left Ventricular Diastolic Dysfunction and Heart Failure With Normal Ejection Fraction. Journal of the American College of Cardiology. 2011;57(7):861–9. DOI: 10.1016/j.jacc.2010.10.018

4. Bugrimova M.A., Savina N.M., Vanieva O.S., Sidorenko B.A. Brain natriuretic peptide as marker and factor of prognosis in chronic heart failure. Kardiologiia. 2006;46(1):51–7. [Russian: Бугримова М.А., Савина Н.М., Ваниева О.С., Сидоренко Б.А. Мозговой натрийуретический пептид как маркер и фактор прогноза при хронической сердечной недостаточности. Кардиология. 2006;46(1):51-7]

5. Mareev V.Yu., Ageev F.T., Arutyunov G.P., Koroteev A.V., Mareev Yu.V., Ovchinnikov A.G. et al. SEHF, RSC and RSMSIM national guidelines on CHF diagnostics and treatment (fourth revision) Approved at the SEHF Congress on December 7, 2012, at the SEHF Board of Directors meeting on March 31, 2013, and at the RSC Congress on September 25, 2013. Russian Heart Failure Journal. 2013;14(7):379–472. [Russian: Мареев В.Ю., Агеев Ф.Т., Арутюнов Г.П., Коротеев А.В., Мареев Ю.В., Овчинников А.Г. и др. Национальные рекомендации ОССН, РКО и РНМОТ по диагностике и лечению ХСН (четвертый пересмотр). Утверждены на Конгрессе ОССН 7 декабря 2012 года, на Правлении ОССН 31 марта 2013 и Конгрессе РКО 25 сентября 2013 года. Журнал Сердечная Недостаточность. 2013;14(7):379-472.]

6. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD. Third universal definition of myocardial infarction. Russian Journal of Cardiology. 2013;2(100 suppl. 1):1–16. [Russian: Авторский коллектив при участии ESC/ACCF/AHA/WHF. Рабочая группа для формулировки Универсального определения инфаркта миокарда. Третье универсальное определение инфаркта миокарда. Российский кардиологический журнал. 2013;2(100 прил. 1):1-16. Доступно на: http://www.scardio.ru/content/Guidelines/Rek_infarct_2013.pdf]

7. Song L, Langfelder P, Horvath S. Random generalized linear model: a highly accurate and interpretable ensemble predictor. BMC Bioinformatics. 2013;14(1):5. DOI: 10.1186/1471-2105-14-5

8. Mogensen UB, Ishwaran H, Gerds TA. Evaluating Random Forests for Survival Analysis Using Prediction Error Curves. Journal of Statistical Software. 2012;50(11):1–23. DOI: 10.18637/jss.v050.i11

9. Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A. Apo2L/TRAIL-Dependent Recruitment of Endogenous FADD and Caspase-8 to Death Receptors 4 and 5. Immunity. 2000;12(6):611–20. DOI: 10.1016/S1074-7613(00)80212-5

10. Osmancik P, Teringova E, Tousek P, Paulu P, Widimsky P. Prognostic Value of TNF-Related Apoptosis Inducing Ligand (TRAIL) in Acute Coronary Syndrome Patients. PLoS ONE. 2013;8(2):e53860. DOI: 10.1371/journal.pone.0053860

11. Khafizov R.R., Zagidullin B.I., Zagidullin N.Sh., Travnikova E.O., Zagidullin Sh.Z. Perspectives application of new biomarkers in the diagnosis of acute coronary syndrome. Practical Medicine. 2012;5(60):89–92. [Russian: Хафизов Р.Р., Загидуллин Б.И., Загидуллин Н.Ш., Травникова Е.О., Загидуллин Ш.З. Перспективы применения новых биомаркеров в диагностике острого коронарного синдрома. Практическая медицина. 2012;5(60):89-92]

12. Mukherjee R, Mingoia JT, Bruce JA, Austin JS, Stroud RE, Escobar GP et al. Selective spatiotemporal induction of matrix metalloproteinase-2 and matrix metalloproteinase-9 transcription after myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology. 2006;291(5):H2216–28. DOI: 10.1152/ajpheart.01343.2005

13. Ky B, French B, Levy WC, Sweitzer NK, Fang JC, Wu AHB et al. Multiple Biomarkers for Risk Prediction in Chronic Heart Failure. Circulation: Heart Failure. 2012;5(2):183–90. DOI: 10.1161/CIRCHEARTFAILURE.111.965020

14. Bayes-Genis A, Januzzi JL, Gaggin HK, de Antonio M, Motiwala SR, Zamora E et al. ST2 Pathogenetic Profile in Ambulatory Heart Failure Patients. Journal of Cardiac Failure. 2015;21(4):355–61. DOI: 10.1016/j.cardfail.2014.10.014

15. Yu J, Oh PC, Kim M, Moon J, Park YM, Lee K et al. Improved early risk stratification of patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention using a combination of serum soluble ST2 and NT-proBNP. PLOS ONE. 2017;12(8):e0182829. DOI: 10.1371/journal.pone.0182829

16. O’Donoghue ML, Morrow DA, Cannon CP, Jarolim P, Desai NR, Sherwood MW et al. Multimarker Risk Stratification in Patients With Acute Myocardial Infarction. Journal of the American Heart Association. 2016;5(5):e002586. DOI: 10.1161/JAHA.115.002586

17. Khamitova A.F., Dozhdev S.S., Zagidullin Sh.Z., Ionin V.A., Gareeva D.F., Zagidullin N.Sh. Serum biomarkers in heart failure and cardiovascular mortality prediction. Arterial Hypertension. 2018;24(1):101–7. [Russian: Хамитова А.Ф., Дождев С.С., Загидуллин Ш.З., Ионин В.А., Гареева Д.Ф., Загидуллин Н.Ш. Значение сывороточных биомаркеров в прогнозировании развития сердечной недостаточности. Артериальная гипертензия. 2018;24(1):101-7]. DOI: 10.18705/1607-419X-2018-24-1-101-107

18. Bobrovskaya E.E., Burova N.N., Kon V.E. Predictors of complications and of unfavorable outcomes in myocardial infarction. Arterial Hypertension. 2009;15(5):539–42. [Russian: Бобровская Е.Е., Бурова Н.Н., Кон В.Е. Предикторы осложненного течения и неблагоприятного прогноза у больных с инфарктом миокарда. Артериальная гипертензия. 2009;15(5):539-42]. DOI: 10.18705/1607-419X-2009-15-5-539-542


Review

For citations:


Khamitova A.F., Lakman I.A., Akhmetvaleev R.R., Tulbaev E.L., Gareeva D.F., Zagidullin Sh.Z., Zagidullin N.Sh. Multifactor predictive model in patients with myocardial infarction based on modern biomarkers. Kardiologiia. 2020;60(3):14-20. https://doi.org/10.18087/cardio.2020.3.2593

Views: 1141


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)