Prevention of Diastolic Dysfunction Caused by Doxorubicin by Mitochondrial Antioxidant Plastomitin
https://doi.org/10.18087/cardio.2020.7.n1157
Abstract
Aim An attempt to prevent the development of diastolic dysfunction (DD) with the mitochondrial antioxidant plastomitin on a model of doxorubicin-induced cardiomyopathy. DD is a type of chronic heart failure. Due to the increasing number of patients with this condition and the absence of effective therapy, development of means for DD correction is a relevant objective.
Material and methods Cardiomyopathy was modeled in 17 rats by two subcutaneous injections of doxorubicin 2 mg/kg/week. The other group (n=17), also administered with doxorubicin, received plastomicin 0.32 mg/kg daily subcutaneously. Left ventricular function was evaluated with echocardiography (EchoCG) and cardiac catheterization with simultaneous pressure and volume monitoring.
Results According to EchoCG data the ejection fraction remained unchanged in the experimental groups. Cardiac catheterization showed disorders of both myocardial contractility and relaxability only in the doxorubicin group.
Conclusion A course of plastomitin in combination with the doxorubicin treatment can maintain normal heart contractility and thereby, prevent the known doxorubicin cardiotoxicity.
Keywords
About the Authors
V. L. LakomkinRussian Federation
leading researcher, PhD
A. A. Abramov
Russian Federation
researcher
E. V. Lukoshkova
Russian Federation
leading researcher, PhD
A. V. Prosvirnin
Russian Federation
physician of the department of Ultrasonic methods
V. I. Kapelko
Russian Federation
chief of laboratory, MD, prof.
References
1. Li S, Gupte AA. The Role of Estrogen in Cardiac Metabolism and Diastolic Function. Methodist DeBakey Cardiovascular Journal. 2017;13(1):4–8. DOI: 10.14797/mdcj-13-1-4
2. Mitry MA, Edwards JG. Doxorubicin induced heart failure: Phenotype and molecular mechanisms. IJC Heart & Vasculature. 2016;10:17–24. DOI: 10.1016/j.ijcha.2015.11.004
3. Singal PK, Iliskovic N, Li T, Kumar D. Adriamycin cardiomyopathy: pathophysiology and prevention. FASEB journal. 1997;11(12):931–6. DOI: 10.1096/fasebj.11.12.9337145
4. Sharma A, Fonarow GC, Butler J, Ezekowitz JA, Felker GM. Coenzyme Q10 and Heart Failure: A State-of-the-Art Review. Circulation: Heart Failure. 2016;9(4):e002639. DOI: 10.1161/CIRCHEARTFAILURE.115.002639
5. Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, Erichev VP et al. An attempt to prevent senescence: A mitochondrial approach. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2009;1787(5):437–61. DOI: 10.1016/j.bbabio.2008.12.008
6. Abramov A.A., Lakomkin V.L., Prosvirnin A.V., Lukoshkova E.V., Kapelko V.I. Mitochondrial Antioxidant Plastomitin Improves Cardiac Function in Doxorubicin-Induced Cardiomyopathy. Kardiologiia. 2019;59(6):35–41. DOI: 10.18087/cardio.2019.6.2649
7. Lakomkin V.L., Kapelko V.I. The effect of prolonged administration of mitochondrial antioxidant SkQ1 on the cardiac contractile function. Kardiologicheskij Vestnik. 2012;7(2):35–40.
8. Marengo JJ, Hidalgo C, Bull R. Sulfhydryl Oxidation Modifies the Calcium Dependence of Ryanodine-Sensitive Calcium Channels of Excitable Cells. Biophysical Journal. 1998;74(3):1263–77. DOI: 10.1016/S0006-3495(98)77840-3
9. Zima A, Blatter L. Redox regulation of cardiac calcium channels and transporters. Cardiovascular Research. 2006;71(2):310–21. DOI: 10.1016/j.cardiores.2006.02.019
10. Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD. Calcium and mitochondria. FEBS letters. 2004;567(1):96–102. DOI: 10.1016/j.febslet.2004.03.071
11. Rimessi A, Giorgi C, Pinton P, Rizzuto R. The versatility of mitochondrial calcium signals: From stimulation of cell metabolism to induction of cell death. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2008;1777(7–8):808–16. DOI: 10.1016/j.bbabio.2008.05.449
12. Gyorke S, Terentyev D. Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovascular Research. 2007;77(2):245–55. DOI: 10.1093/cvr/cvm038
13. Borlaug BA, Kass DA. Mechanisms of Diastolic Dysfunction in Heart Failure. Trends in Cardiovascular Medicine. 2006;16(8):273–9. DOI: 10.1016/j.tcm.2006.05.003
14. Makarenko I, Opitz CA, Leake MC, Neagoe C, Kulke M, Gwathmey JK et al. Passive Stiffness Changes Caused by Upregulation of Compliant Titin Isoforms in Human Dilated Cardiomyopathy Hearts. Circulation Research. 2004;95(7):708–16. DOI: 10.1161/01.RES.0000143901.37063.2f
15. Hamdani N, Franssen C, Lourenço A, Falcão-Pires I, Fontoura D, Leite S et al. Myocardial Titin Hypophosphorylation Importantly Contributes to Heart Failure With Preserved Ejection Fraction in a Rat Metabolic Risk Model. Circulation: Heart Failure. 2013;6(6):1239–49. DOI: 10.1161/CIRCHEARTFAILURE.113.000539
16. Borbély A, Papp Z, Edes I, Paulus WJ. Molecular determinants of heart failure with normal left ventricular ejection fraction. Pharmacological reports. 2009;61(1):139–45. DOI: 10.1016/s1734-1140(09)70016-7
17. Lakomkin V.L., Abramov A.A., Studneva I.M., Ulanova A.D., Vikhlyantsev I.M., Prosvirnin A.V. Early changes of energy metabolism, isomorphic content and level of titin phosphorylation at diastolic dysfunction. Kardiologiia. 2020;60(2):4–6. DOI: http://dx.doi.org/10.18087/cardio.2020.2.n531
Review
For citations:
Lakomkin V.L., Abramov A.A., Lukoshkova E.V., Prosvirnin A.V., Kapelko V.I. Prevention of Diastolic Dysfunction Caused by Doxorubicin by Mitochondrial Antioxidant Plastomitin. Kardiologiia. 2020;60(7):98-102. https://doi.org/10.18087/cardio.2020.7.n1157