Ischemic Mitral Regurgitation: Echocardiographic Algorithm, the Place of Three-Dimensional Transesophageal Echocardiography
https://doi.org/10.18087/cardio.2020.2.n839
Abstract
Objective Identify the diagnostic markers of the severe MV changes in patients with ischemic mitral regurgitation (IMR) and suggest a modification of the echocardiography (EchoCG) algorithm.
Materials and Methods A two-stage examination of 65 patients with mild (n=22), moderate (n=22), and severe (n=21) IMR was performed using two-dimensional (2D) transthoracic EchoCG with dopplerography, 2D and three-dimensional (3D) transesophageal EchoCG (TEE). 4D MV-Assessment in off-line mode was made in TomTec Imaging Systems GmbH, Germany. Statistical analysis (SAS 9.4) included Student’s t-test, Kruskal-Wallis method, Pearson correlation, multivariate regression analysis, and ROC-analysis.
Results According to 3D TEE the significant changes in MV annulus, leaflets and tenting are detected. 3D parameters of MV geometry are related to IMR severity, left ventricle (LV) remodeling (global and regional), and they are different in symmetric and asymmetric variants. In symmetric variant MV reconstruction is correlated with LV dilatation and contractility decrease, in asymmetric variant it’s correlated with regional remodeling parameters. Severe IMR is characterized by a decrease in MV annulus displacement (27,0±6,6 mm/s versus 32,4±10,8 mm/s in mild IMR; р<0,05), tenting volume fraction (32,5±14,8% versus 56,2±16,8% in mild IMR; p<0,05), and annulus area fraction (4,7±2,7% versus 6,6±4,5% in mild IMR; р<0,05). Vena contracta width (VCW), Proximal Isovelocity Surface Area (PISA) radius, Effective Regurgitant Orifice Area (EROA), Regurgitant Volume (Rvol), LV end systolic dimension (LV ESD), and central large jet >50% of left atrium (LA) area have a predictive value in the diagnosis of MV geometry severe changes. If thresholds are reached these 2D TTE parameters can be used as indications for the 3D TEE.
Conclusion 3D TEE allows for detailed assessment of MV geometry and function depended on IMR severity and variant. To make decision of MV surgery 3D TEE is recommended if the following indicators are presented: (1) VCW ≥0,7 cm; PISA radius ≥1,0 cm; central large jet >50% of LA area; LV ESD ≥4,0 cm; (2) VCW ≥0,6 cm; PISA radius = 0,6-0,99 cm; EROA ≥0,3 cm2; RVol≥45 cm; IMR eccentric jet + IMR elliptical orifice.
About the Authors
M. A. SaidovaRussian Federation
Moscow
A. M. Andrianova
Russian Federation
Moscow
References
1. Agricola E, Oppizzi M, Pisani M, Meris A, Maisano F, Margonato A. Ischemic mitral regurgitation: Mechanisms and echocardiographic classification. European Journal of Echocardiography. 2007;9(2):207– 21. DOI: 10.1016/j.euje.2007.03.034
2. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Fleisher LA et al. 2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2017;135(25):e1159–95. DOI: 10.1161/CIR.0000000000000503
3. Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. European Heart Journal. 2017;38(36):2739–91. DOI: 10.1093/eurheartj/ehx391
4. Kuznetsov V.A., Yaroslavskaya E.I., Krinochkin D.V., Pushkarev G.S., Maryinskikh L.V. Factors Associated With Mitral Regurgitation in Men With Ischemic Heart Disease Without Myocardial Infarction. Kardiologiia. 2013;53(11):4–8. In Russian
5. Goliasch G, Bartko PE, Pavo N, Neuhold S, Wurm R, Mascherbauer J et al. Refining the prognostic impact of functional mitral regurgitation in chronic heart failure. European Heart Journal. 2018;39(1):39–46. DOI: 10.1093/eurheartj/ehx402
6. Bokeria L.A., Bokeria O.L., Fatulayev Z.F., Shengelia L.D. Mitral Regurgitation: Etiopathogenic Mechanisms and Review of Diagnostic Methods. Kardiologiia. 2017;57(3):75–80. In Russian
7. Borger MA, Alam A, Murphy PM, Doenst T, David TE. Chronic Ischemic Mitral Regurgitation: Repair, Replace or Rethink? The Annals of Thoracic Surgery. 2006;81(3):1153–61. DOI: 10.1016/j.athoracsur.2005.08.080
8. Dudzinski DM, Hung J. Echocardiographic assessment of ischemic mitral regurgitation. Cardiovascular Ultrasound. 2014;12(1):46. DOI: 10.1186/1476-7120-12-46
9. Acker MA, Parides MK, Perrault LP, Moskowitz AJ, Gelijns AC, Voisine P et al. Mitral-Valve Repair versus Replacement for Severe Ischemic Mitral Regurgitation. New England Journal of Medicine. 2014;370(1):23–32. DOI: 10.1056/NEJMoa1312808
10. Zeng X, Tan TC, Dudzinski DM, Hung J. Echocardiography of the Mitral Valve. Progress in Cardiovascular Diseases. 2014;57(1):55–73. DOI: 10.1016/j.pcad.2014.05.010
11. Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA et al. Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation. Journal of the American Society of Echocardiography. 2017;30(4):303–71. DOI: 10.1016/j.echo.2017.01.007
12. Hahn RT, Abraham T, Adams MS, Bruce CJ, Glas KE, Lang RM et al. Guidelines for Performing a Comprehensive Transesophageal Echocardiographic Examination: Recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. Journal of the American Society of Echocardiography. 2013;26(9):921–64. DOI: 10.1016/j.echo.2013.07.009
13. D echocardiography. Shiota T, editor -Boca Raton: Taylor & Francis, CRC Press;2014. 234 p. ISBN 978-1-84184-993-5
14. Noack T, Kiefer P, Ionasec R, Voigt I, Mansi T, Vollroth M et al. New concepts for mitral valve imaging. Annals of Cardiothoracic Surgery. 2013;2(6):787–95. DOI: 10.3978/j.issn.2225-319X.2013.11.01
15. Lancellotti P, Tribouilloy C, Hagendorff A, Popescu BA, Edvardsen T, Pierard LA et al. Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. European Heart Journal Cardiovascular Imaging. 2013;14(7):611–44. DOI: 10.1093/ehjci/jet105
16. Andrianova A.M., Saidova M.A. Three-dimensional transesophageal echocardiography for assessment of geometry and function of the mitral valve in patients with various degrees of mitral regurgitation. Emergency Cardiology. 2017;1:14–24. In Russian
17. Zeng X, Nunes MCP, Dent J, Gillam L, Mathew JP, Gammie JS et al. Asymmetric versus Symmetric Tethering Patterns in Ischemic Mitral Regurgitation: Geometric Differences from Three-Dimensional Transesophageal Echocardiography. Journal of the American Society of Echocardiography. 2014;27(4):367–75. DOI: 10.1016/j.echo.2014.01.006
18. Agricola E. Echocardiographic classification of chronic ischemic mitral regurgitation caused by restricted motion according to tethering pattern. European Journal of Echocardiography. 2004;5(5):326–34. DOI: 10.1016/j.euje.2004.03.001
19. Andrianova A.M., Saidova M.A., Bolotova M.N., Dobrovolskaya S.V., Makeev M.I. P1134. Correlations of three-dimensional mitral valve geometry with chronic ischemic mitral regurgitation severity in compliance with tethering phenotypes. European Heart Journal Cardiovascular Imaging. 2016;17(suppl_2):ii240. DOI: 10.1093/ehjci/jew262.002
20. Andrianova A.M., Saidova M.A., Bolotova M.N., Dobrovolskaya S.V. Comparative evaluation of symmetric and asymmetric ischemic mitral regurgitation according to the three-dimensional transesophageal and two-dimensional transthoracic echocardiography. Atherosclerosis and Dyslipidemias. 2017;2(27):74–83. In Russian
Review
For citations:
Saidova M.A., Andrianova A.M. Ischemic Mitral Regurgitation: Echocardiographic Algorithm, the Place of Three-Dimensional Transesophageal Echocardiography. Kardiologiia. 2020;60(2):54-60. https://doi.org/10.18087/cardio.2020.2.n839