Echocardiography in the Assessment of Postsystolic Shortening of the Left Ventricle Myocardium of the Heart
https://doi.org/10.18087/cardio.2020.12.n1087
Abstract
Echocardiography allows evaluating left ventricular (LV) myocardial contractility; however, the visual assessment of contractility is subjective and requires considerable experience. Modern technologies for assessment of LV myocardial contractility, such as tissue Doppler and speckle-tracking echocardiography, provide quantitative estimation of various parameters of myocardial strain, including the LV postsystolic shortening. Several studies have demonstrated the value of postsystolic shortening for evaluation of myocardial ischemia and “ischemic memory” in patients with cardiovascular diseases. This review analyzes experimental and clinical studies that addressed LV postsystolic shortening.
Keywords
About the Authors
M. N. AlekhinRussian Federation
Head of the Department, Doctor of Medical Sciences, Professor of the Department of Therapy, Cardiology and Functional Diagnostics with a course of nephorology
A. I. Stepanova
Russian Federation
Postgraduate student 2 years of the Department of Therapy, Cardiology and Functional Diagnostics with a course of nephrology
References
1. Asanuma T, Nakatani S. Myocardial ischaemia and post-systolic shortening. Heart. 2015;101(7):509–16. DOI: 10.1136/heartjnl-2013-305403
2. Voigt J, Lindenmeier G, Exner B, Regenfus M, Werner D, Reulbach U et al. Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. Journal of the American Society of Echocardiography. 2003;16(5):415–23. DOI: 10.1016/S0894-7317(03)00111-1
3. Derumeaux G, Ovize M, Loufoua J, André-Fouet X, Minaire Y, Cribier A et al. Doppler Tissue Imaging Quantitates Regional Wall Motion During Myocardial Ischemia and Reperfusion. Circulation. 1998;97(19):1970–7. DOI: 10.1161/01.CIR.97.19.1970
4. Shvets D.A., Povetkin S.V. Diagnostic value and mechanisms of postsystoliс shortening in case of postinfarction focal changes of the left ventricle. Kursk Scientific and Practical Bulletin ‘Man and His Health’. 2015;1:59–64.
5. Brainin P, Biering-Sørensen SR, Møgelvang R, de Knegt MC, Olsen FJ, Galatius S et al. Post-systolic shortening: normal values and association with validated echocardiographic and invasive measures of cardiac function. The International Journal of Cardiovascular Imaging. 2019;35(2):327–37. DOI: 10.1007/s10554-018-1474-2
6. Mora V, Roldán I, Romero E, Saurí A, Romero D, Pérez-Gozalbo J et al. Myocardial Contraction during the Diastolic Isovolumetric Period: Analysis of Longitudinal Strain by Means of Speckle Tracking Echocardiography. Journal of Cardiovascular Development and Disease. 2018;5(3):41. DOI: 10.3390/jcdd5030041
7. Brown MA, Norris RM, Takayama M, White HD. Post-systolic shortening a marker of potential for early recovery of acutely ischaemic myocardium in the dog. Cardiovascular Research. 1987;21(10):703– 16. DOI: 10.1093/cvr/21.10.703
8. Akaishi M, Schneider RM, Seelaus PA, Klein LW, Agarwal JB, Helfant RH et al. A non-linear elastic model of contraction of ischaemic segments. Cardiovascular Research. 1988;22(12):889–99. DOI: 10.1093/cvr/22.12.889
9. Brainin P, Hoffmann S, Fritz-Hansen T, Olsen FJ, Jensen JS, BieringSørensen T. Usefulness of Postsystolic Shortening to Diagnose Coronary Artery Disease and Predict Future Cardiovascular Events in Stable Angina Pectoris. Journal of the American Society of Echocardiography. 2018;31(8):870-879.e3. DOI: 10.1016/j.echo.2018.05.007
10. Grines CL, Bashore TM, Boudoulas H, Olson S, Shafer P, Wooley CF. Functional abnormalities in isolated left bundle branch block. The effect of interventricular asynchrony. Circulation. 1989;79(4):845–53. DOI: 10.1161/01.CIR.79.4.845
11. Claus P, Weidemann F, Dommke C, Bito V, Heinzel FR, D’hooge J et al. Mechanisms of Postsystolic Thickening in Ischemic Myocardium: Mathematical Modelling and Comparison With Experimental Ischemic Substrates. Ultrasound in Medicine & Biology. 2007;33(12):1963–70. DOI: 10.1016/j.ultrasmedbio.2007.06.003
12. Skulstad H, Edvardsen T, Urheim S, Rabben SI, Stugaard M, Lyseggen E et al. Postsystolic Shortening in Ischemic Myocardium: Active Contraction or Passive Recoil? Circulation. 2002;106(6):718–24. DOI: 10.1161/01.CIR.0000024102.55150.B6
13. Eek C, Grenne B, Brunvand H, Aakhus S, Endresen K, Smiseth OA et al. Postsystolic shortening is a strong predictor of recovery of systolic function in patients with non-ST-elevation myocardial infarction. European Journal of Echocardiography. 2011;12(7):483–9. DOI: 10.1093/ejechocard/jer055
14. Terkelsen C, Hvitfeldt Poulsen S, Nørgaard BL, Flensted Lassen J, Gerdes JC, Sloth E et al. Does Postsystolic Motion or Shortening Predict Recovery of Myocardial Function After Primary Percutanous Coronary Intervention? Journal of the American Society of Echocardiography. 2007;20(5):505–11. DOI: 10.1016/j.echo.2006.10.004
15. Brainin P, Haahr-Pedersen S, Sengeløv M, Olsen FJ, Fritz-Hansen T, Jensen JS et al. Presence of post-systolic shortening is an independent predictor of heart failure in patients following ST-segment elevation myocardial infarction. The International Journal of Cardiovascular Imaging. 2018;34(5):751–60. DOI: 10.1007/s10554-017-1288-7
16. Asanuma T, Fukuta Y, Masuda K, Hioki A, Iwasaki M, Nakatani S. Assessment of Myocardial Ischemic Memory Using Speckle Tracking Echocardiography. JACC: Cardiovascular Imaging. 2012;5(1):1–11. DOI: 10.1016/j.jcmg.2011.09.019
17. Jamal F, Kukulski T, Strotmann J, Szilard M, D’hooge J, Bijnens B et al. Quantification of the spectrum of changes in regional myocardial function during acute ischemia in closed chest pigs: An ultrasonic strain rate and strain study. Journal of the American Society of Echocardiography. 2001;14(9):874–84. DOI: 10.1067/mje.2001.112037
18. Pijls NHJ, de Bruyne B, Peels K, van der Voort PH, Bonnier HJRM, Bartunek J et al. Measurement of Fractional Flow Reserve to Assess the Functional Severity of Coronary-Artery Stenoses. New England Journal of Medicine. 1996;334(26):1703–8. DOI: 10.1056/NEJM199606273342604
19. Ozawa K, Funabashi N, Nishi T, Takahara M, Fujimoto Y, Kamata T et al. Determination of best post-systolic shortening parameters on resting TTE for detection of left ventricular ischemic segments quantitatively confirmed by invasive fractional flow reserve. International Journal of Cardiology. 2016;222:27–30. DOI: 10.1016/j.ijcard.2016.07.106
20. Okuda K, Asanuma T, Hirano T, Masuda K, Otani K, Ishikura F et al. Impact of the Coronary Flow Reduction at Rest on Myocardial Perfusion and Functional Indices Derived from Myocardial Contrast and Strain Echocardiography. Journal of the American Society of Echocardiography. 2006;19(6):781–7. DOI: 10.1016/j.echo.2005.10.016
21. Baltabaeva A, Marciniak M, Bijnens B, Moggridge J, He F, Antonios T et al. Regional left ventricular deformation and geometry analysis provides insights in myocardial remodelling in mild to moderate hypertension. European Journal of Echocardiography. 2008;9(4):501–8. DOI: 10.1016/j.euje.2007.08.004
22. Oleynikov V.E., Smirnov Yu.G., Galimskaya V.A., Kupriyanova S.N., Salyamova L.I., Golubeva A.V. New characteristics of long-term coverability determined by the speckle tracking method. University proceedings. Volga region. Medical sciences. 2019;1(49):27–39. DOI: 10.21685/2072-3032-2019-1-3
23. Pavlyukova E.N., Trubina E.V., Karpov R.S. Left ventricle strain/strain rate in patients with ischemic and dilated cardiomyopathy. Siberian Medical Journal (Tomsk). 2012;27(3):38–45.
24. Onishi T, Uematsu M, Watanabe T, Fujita M, Awata M, Iida O et al. Objective Interpretation of Dobutamine Stress Echocardiography by Diastolic Dyssynchrony Imaging: A Practical Approach. Journal of the American Society of Echocardiography. 2010;23(10):1103–8. DOI: 10.1016/j.echo.2010.06.031
25. Voigt J-U, Exner B, Schmiedehausen K, Huchzermeyer C, Reulbach U, Nixdorff U et al. Strain-Rate Imaging During Dobutamine Stress Echocardiography Provides Objective Evidence of Inducible Ischemia. Circulation. 2003;107(16):2120–6. DOI: 10.1161/01.CIR.0000065249.69988.AA
26. Rambaldi R, Bax JJ, Rizzello V, Biagini E, Valkema R, Roelandt JRTC et al. Post-systolic shortening during dobutamine stress echocardiography predicts cardiac survival in patients with severe left ventricular dysfunction. Coronary Artery Disease. 2005;16(3):141–5. DOI: 10.1097/00019501-200505000-00002
27. Taegtmeyer H, Dilsizian V. Imaging myocardial metabolism and ischemic memory. Nature Clinical Practice Cardiovascular Medicine. 2008;5(2 Suppl):S42–8. DOI: 10.1038/ncpcardio1186
28. Asanuma T, Uranishi A, Masuda K, Ishikura F, Beppu S, Nakatani S. Assessment of Myocardial Ischemic Memory Using Persistence of Post-Systolic Thickening After Recovery From Ischemia. JACC: Cardiovascular Imaging. 2009;2(11):1253–61. DOI: 10.1016/j.jcmg.2009.07.008
29. Sakurai D, Asanuma T, Masuda K, Hioki A, Nakatani S. Myocardial layer-specific analysis of ischemic memory using speckle tracking echocardiography. The International Journal of Cardiovascular Imaging. 2014;30(4):739–48. DOI: 10.1007/s10554-014-0388-x
30. Hioki A, Asanuma T, Masuda K, Sakurai D, Nakatani S. Detection of abnormal myocardial deformation during acute myocardial ischemia using three-dimensional speckle tracking echocardiography. Journal of Echocardiography. 2020;18(1):57–66. DOI: 10.1007/s12574-019-00449-6
31. Kozuma A, Asanuma T, Masuda K, Adachi H, Minami S, Nakatani S. Assessment of Myocardial Ischemic Memory Using Three-Dimensional Speckle-Tracking Echocardiography: A Novel Integrated Analysis of Early Systolic Lengthening and Postsystolic Shortening. Journal of the American Society of Echocardiography. 2019;32(11):1477–86. DOI: 10.1016/j.echo.2019.06.013
Review
For citations:
Alekhin M.N., Stepanova A.I. Echocardiography in the Assessment of Postsystolic Shortening of the Left Ventricle Myocardium of the Heart. Kardiologiia. 2020;60(12):110-116. (In Russ.) https://doi.org/10.18087/cardio.2020.12.n1087