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INCREMENTAL VALUE OF RADIOMICS FEATURES
OF EPICARDIAL ADIPOSE TISSUE FOR DETECTING
THE SEVERITY OF COVID-19 INFECTION

ADDITIONAL MATERIALS

Supplementary Methods

Study Population

For the EAT extraction study, the heart contour
of 47 subjects in Cohort 1 (27 mild and 20 severe COVID-19
cases) and 15 subjects in Cohort 2 (8 mild and 7 severe
COVID-19 cases) was manually drawn by experienced
operators on LabelMe (Version 4.5.9) and used to train
the segmentation model. For the classification modeling
phase of mild and severe cases, the EAT of the remaining
368 subjects from Cohort 1 and 85 subjects from Cohort
2 was extracted automatically using a trained deep learning
model. 415 patients (371 mild cases and 44 severe cases) with
confirmed COVID-19 from Cohort 1 were randomly divided
into a derivation Cohort (n=290, 260 mild cases, 30 severe
cases) and an internal validation cohort (n=125, 111 mild
cases, 14 cases) (Figure 1). Each case contained its clinical
information and a set of chest computed tomography (CT)
images in Cohort 1. 100 patients (S0 mild and SO severe)
from Cohort 2 were deemed as an external validation cohort
(Figure 1). Each case contains a set of chest CT images in
Cohort 2.

Supplementary Results

Patient characteristics

In the internal validation cohort, 14 (11.2%) patients were
diagnosed with severe COVID-19. The mean age of mild
and severe cases was 40.46£15.23 yrs and 59.71+14.46 yrs,
respectively, and 59% (n=111) and 79% (n=14) were male,
respectively (Table 1). There were no significant differences
(p>0.05) in gender, white blood cell count, lactic acid, and
creatinine.
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Fifty patients (50%) were diagnosed with severe
COVID-19in the external validation cohort. The mean age of
mild and severe cases was 46.22+7.38 and 62.38+16.14 yrs,
respectively, and 56% (n=28) and 60% (n=30) were male,
respectively. There were no significant differences (p>0.05)
in gender.

Chest CT procedures

CT scans were performed using Toshiba Aquilion 64 CT
scanner in Cohort 1. Image acquisition parameters consisted
of 120 kV and 114.1 mAs. The thickness of the CT scanned
slices was 5 mm, and the in-plane pixel size ranged from
0.579 mm to 0.935 mm. The number of chest CT slices for
each patient ranged from 52 to 70. CT scans were performed
using a Siemens Somatom Sensation 64 CT scanner in
Cohort 2. Image acquisition parameters consisted of 120 kV
and 94 mAs. The thickness of the CT scanned slices was
1 mm, and the in-plane pixel size ranged from 0.669 mm to
0.815 mm. The number of chest CT slices for each patient
ranged from 300 to 370.

Due to the difference in CT data acquisition imaging
between the two cohorts, the segmentation method was
used to train the model in the two cohorts.

Supplementary Discussion

EAT segmentation

A comparative test was conducted with a three-
dimensional V-Net [27] network to explore whether object
detection combined with a two-dimensional network
would enhance segmentation (Figure 3). The experimental
results revealed that while the 3D network can avoid the
need to select CT images by object detection, its accuracy in
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Supplementary Table 1. Baseline characteristics of patients in the derivation and internal validation cohort with mild and severe COVID-19

Characteristics

Derivation Cohort

Internal Validation Cohort

Mild Severe P Mild Severe P
Age, yrs 39.98+15.39 59.23+14.86 <.001 40.46+15.23 59.71+£14.46 <.001
Gender 59 15
Male 125 (48) 16 (S3) 65 (59) 11 (79)
Female 135(52) 14 (47) 46 (41) 3(21)
Past cardiovascular disease 35(13) 13 (43) <.001 16 (14) 5(36) .045
Lactate dehydrogenase, (U/1) 219.37+61.10 346.47+142.47 <.001 220.29+83.26 326.29+102.63 <.001
NTPro-BNP, (pg/ml) 4.22+0.94 4.19+1.01 .84 4.26+0.83 3.71+0.62 .02
Creatine kinase isoenzymes, (ng/ml) ~ 13.19+12.07 16.43+10.69 .16 12.61+4.66 12.91+2.37 .82
Hypertension, 31(12) 9(30) .01 16(14) 5(36) .045
D-dimer, (ug/ml) 0.55%1.34 1.72£3.70 <.001 0.57+1.64 2.2314.96 .01
White blood cell, (10°/1) 5.55+1.90 5.37£1.94 61 5.38+2.39 6.2244.61 29
Lymphocyte, (10°/1) 1.44+0.60 1.02+0.41 <.001 1.4540.49 0.93+0.61 <.001
Serum sodium, (mmol/1) 139.90+2.70 137.70+3.77 <.001 139.98+2.04 134.29+5.20 <.001
Urea, (mmol/1) 4.43£1.50 5.56+3.46 <.001 4.43%1.13 5.04£2.09 .09
PO2, (KPa) 14.34+4.34 9.94+4.94 <.001 14.68+4.75 13.45+5.51 38
PCO2, (KPa) 5.43+0.45 5.49+0.89 .66 5.39+0.59 4.94+0.72 .01
PCT, (ng/ml) 0.04+0.03 0.18+0.39 <.001 0.04+0.04 0.16+0.18 <.001
APTT, (s) 38.57£6.35 42.06£6.57 .01 38.02%4.10 43.10+5.69 <.001
PT, (s) 13.38+1.10 13.62£0.83 .26 13.29+0.60 13.73£1.46 .04
Potassium, (mmol/1) 3.80+0.34 3.79+0.36 .89 3.83+0.34 3.58+0.43 .02
Lactic acid, (mmol/1) 1.26£1.20 1.37+1.03 .62 1.29+0.81 0.94+0.22 11
HDL-C, (mmol/1) 29.23+3.90 28.46+3.77 31 29.0243.80 26.26+3.14 .01
eGFR, (ml/(min*1.73m?)) 117.13+25.09  106.31+29.54 .03 118.49+22.74  108.55+29.74 14
Creatinine, (umol/1) 65.30£19.22 69.14+33.25 .35 64.35£14.09 70.31+21.95 17
LDL-C, (mmol/1) 24.46+1.84 24.51+2.49 .89 24.37+1.77 24.5612.44 .73
ALT, (U/1) 25.03+18.11 29.23%£19.50 24 29.72422.25 36.08+35.10 .36
AST, (U/1) 24.61+£19.05 37.50+25.24 <.001 24.56+£12.24 37.51+23.90 <.001
Dyspnea 6(2) 2(7) .18 2(2) 5(36) <.001
Diabetes 14 (5) 3(10) 31 4(4) 3(21) 01
Antivirals 161 (56) 29 (97) <.001 73 (66) 13 (93) .04
Exudative lesions 50 (17) 10 (33) .07 16 (14) 2(14) .99
CAD 5(2) 4(13) <.001 0(0) 0(0) -

Data are number (percentage) or mean+SD. ALT, alanine aminotransferase; APTT, activated partial thrombin time; AST, aspartate
aminotransferase; CAD, coronary heart disease; eGFR, estimated glomerular filtration rate; HDL-C, high density liptein cholesterol;

LDL-C, low density lipoprotein cholesterol; PCO2, partial pressure of carbon dioxide; PCT, procalcitonin; PO2, partial
pressure of oxygen; NTPRO-BNP, NT pro B-type natriuretic peptide; PT, prothrombin time.

segmenting image details is not as high as that achieved after
object detection using the 2D network. As a result, the 2D
network was chosen over the 3D network. Hoori et al. [7]
proposed an EAT segmentation method using the DeepLab-
v3-plus technique. This method adds the learning of multi-
scale features to improve the segmentation performance.

Commandeur et al. [8] combined pericardium detection to

segment the EAT. However, these methods are segmented
in CT slices containing the heart, and the CT slices that do
not contain the heart still had to be manually removed. Our

proposed method demonstrated superiority over existing

methods in two cohorts, attributed to the influence of negative

samples provided by the object detection module prior to

segmentation, which improved segmentation accuracy.

Supplementary Table 2. Features used in diagnostic

models. The F features were ranked according

to the AUC in univariate analysis

Features
of the source

Features

EAT original glszm ZoneEntropy

Lung original firstorder Kurtosis

Lung original glszm SmallAreaEmphasis

EAT original firstorder Skewness

Lung original glszm LargeArealowGrayLevelEmphasis
EAT original glszm LargeArealLowGrayLevelEmphasis
Lung original glem MaximalCorrelationCoefficient
EAT original glszm_ZonePercentage

Lung original ngtdm_Strength

Lung original ngtdm_Complexity
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Supplementary Figure 1. Feature importance scores
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Notably, the operational time for
segmenting and extracting EAT
from a patient’s chest CT data on
a standard computer was less than
20 seconds, a significant reduction
compared to the approximately
20 minutes required for manual
extraction by a specialist. This
efficiency improvement represents
a substantial time-saving advantage,
facilitating more convenient EAT
extraction and meaningful research
endeavors.

Limitations

Our study still has a few
limitations. Firstly, in the segmen-
tation model, two segmentation
models need to be trained to comp-
lete the segmentation of the heart
contour due to the imaging dif-
ference between the two centers’
data. Secondly, the number of pa-
tients included in the study was
relatively small.



