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Supplementary Methods

Study Population
For the EAT extraction study, the heart contour 

of 47 subjects in Cohort 1 (27 mild and 20 severe COVID-19 
cases) and 15 subjects in Cohort 2 (8 mild and 7  severe 
COVID-19 cases) was manually drawn by experienced 
operators on LabelMe (Version 4.5.9) and used to train 
the segmentation model. For the classification modeling 
phase of mild and severe cases, the EAT of the remaining 
368  subjects from Cohort 1 and 85 subjects from Cohort 
2 was extracted automatically using a trained deep learning 
model. 415 patients (371 mild cases and 44 severe cases) with 
confirmed COVID-19 from Cohort 1 were randomly divided 
into a derivation Cohort (n=290, 260  mild cases, 30  severe 
cases) and an internal validation cohort (n=125, 111  mild 
cases, 14  cases) (Figure 1). Each case contained its clinical 
information and a set of chest computed tomography (CT) 
images in Cohort 1. 100 patients (50 mild and 50  severe) 
from Cohort 2 were deemed as an external validation cohort 
(Figure  1). Each case contains a set of chest CT images in 
Cohort 2.

Supplementary Results

Patient characteristics
In the internal validation cohort, 14 (11.2 %) patients were 

diagnosed with severe COVID-19. The mean age of mild 
and severe cases was 40.46±15.23 yrs and 59.71±14.46 yrs, 
respectively, and 59 % (n=111) and 79 % (n=14) were male, 
respectively (Table 1). There were no significant differences 
(p>0.05) in gender, white blood cell count, lactic acid, and 
creatinine.

Fifty patients (50 %) were diagnosed with severe 
COVID-19 in the external validation cohort. The mean age of 
mild and severe cases was 46.22±7.38 and 62.38±16.14 yrs, 
respectively, and 56 % (n=28) and 60 % (n=30) were male, 
respectively. There were no significant differences (p>0.05) 
in gender.

Chest CT procedures
CT scans were performed using Toshiba Aquilion 64 CT 

scanner in Cohort 1. Image acquisition parameters consisted 
of 120 kV and 114.1 mAs. The thickness of the CT scanned 
slices was 5 mm, and the in-plane pixel size ranged from 
0.579 mm to 0.935 mm. The number of chest CT slices for 
each patient ranged from 52 to 70. CT scans were performed 
using a Siemens Somatom Sensation 64 CT scanner in 
Cohort 2. Image acquisition parameters consisted of 120 kV 
and 94 mAs. The thickness of the CT scanned slices was 
1 mm, and the in-plane pixel size ranged from 0.669 mm to 
0.815 mm. The number of chest CT slices for each patient 
ranged from 300 to 370.

Due to the difference in CT data acquisition imaging 
between the two cohorts, the segmentation method was 
used to train the model in the two cohorts.

Supplementary Discussion

EAT segmentation
A comparative test was conducted with a three-

dimensional V-Net [27] network to explore whether object 
detection combined with a two-dimensional network 
would enhance segmentation (Figure 3). The experimental 
results revealed that while the 3D network can avoid the 
need to select CT images by object detection, its accuracy in 
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segmenting image details is not as high as that achieved after 
object detection using the 2D network. As a result, the 2D 
network was chosen over the 3D network. Hoori et al. [7] 
proposed an EAT segmentation method using the DeepLab-
v3-plus technique. This method adds the learning of multi-
scale features to improve the segmentation performance. 
Commandeur et al. [8] combined pericardium detection to 
segment the EAT. However, these methods are segmented 
in CT slices containing the heart, and the CT slices that do 
not contain the heart still had to be manually removed. Our 
proposed method demonstrated superiority over existing 
methods in two cohorts, attributed to the influence of negative 
samples provided by the  object detection module prior to 
segmentation, which improved segmentation accuracy. 

Supplementary Table 1. Baseline characteristics of patients in the derivation and internal validation cohort with mild and severe COVID-19

Characteristics
Derivation Cohort 

p
Internal Validation Cohort 

p
Mild Severe Mild Severe

Age, yrs 39.98±15.39 59.23±14.86 <.001 40.46±15.23 59.71±14.46 <.001
Gender 59 15
Male 125 (48) 16 (53) 65 (59) 11 (79)
Female 135 (52) 14 ( 47) 46 (41) 3 (21)
Past cardiovascular disease 35 (13) 13 ( 43) <.001 16 (14) 5 (36) .045
Lactate dehydrogenase, (U/l) 219.37±61.10 346.47±142.47 <.001 220.29±83.26 326.29±102.63 <.001
NTPro-BNP, (pg/ml) 4.22±0.94 4.19±1.01 .84 4.26±0.83 3.71±0.62 .02
Creatine kinase isoenzymes, (ng/ml) 13.19±12.07 16.43±10.69 .16 12.61±4.66 12.91±2.37 .82
Hypertension, 31 (12) 9 (30) .01 16(14) 5 (36) .045
D-dimer, (ug/ml) 0.55±1.34 1.72±3.70 <.001 0.57±1.64 2.23±4.96 .01
White blood cell, (109/l) 5.55±1.90 5.37±1.94 .61 5.38±2.39 6.22±4.61 .29
Lymphocyte, (109/l) 1.44±0.60 1.02±0.41 <.001 1.45±0.49 0.93±0.61 <.001
Serum sodium, (mmol/l) 139.90±2.70 137.70±3.77 <.001 139.98±2.04 134.29±5.20 <.001
Urea, (mmol/l) 4.43±1.50 5.56±3.46 <.001 4.43±1.13 5.04±2.09 .09
PO2, (KPa) 14.34±4.34 9.94±4.94 <.001 14.68±4.75 13.45±5.51 .38
PCO2, (KPa) 5.43±0.45 5.49±0.89 .66 5.39±0.59 4.94±0.72 .01
PCT, (ng/ml) 0.04±0.03 0.18±0.39 <.001 0.04±0.04 0.16±0.18 <.001
APTT, (s) 38.57±6.35 42.06±6.57 .01 38.02±4.10 43.10±5.69 <.001
PT, (s) 13.38±1.10 13.62±0.83 .26 13.29±0.60 13.73±1.46 .04
Potassium, (mmol/l) 3.80±0.34 3.79±0.36 .89 3.83±0.34 3.58±0.43 .02
Lactic acid, (mmol/l) 1.26±1.20 1.37±1.03 .62 1.29±0.81 0.94±0.22 .11
HDL-C, (mmol/l) 29.23±3.90 28.46±3.77 .31 29.02±3.80 26.26±3.14 .01
eGFR, (ml/(min*1.73m2)) 117.13±25.09 106.31±29.54 .03 118.49±22.74 108.55±29.74 .14
Creatinine, (umol/l) 65.30±19.22 69.14±33.25 .35 64.35±14.09 70.31±21.95 .17
LDL-C, (mmol/l) 24.46±1.84 24.51±2.49 .89 24.37±1.77 24.56±2.44 .73
ALT, (U/l) 25.03±18.11 29.23±19.50 .24 29.72±22.25 36.08±35.10 .36
AST, (U/l) 24.61±19.05 37.50±25.24 <.001 24.56±12.24 37.51±23.90 <.001
Dyspnea 6 (2) 2 (7) .18 2 (2) 5 (36) <.001
Diabetes 14 (5) 3 (10) .31 4 (4) 3 (21) .01
Antivirals 161 (56) 29 (97) <.001 73 (66) 13 (93) .04
Exudative lesions 50 (17) 10 (33) .07 16 (14) 2 (14) .99
CAD 5 (2) 4 (13) <.001 0 (0) 0 (0) -
Data are number (percentage) or mean±SD. ALT, alanine aminotransferase; APTT, activated partial thrombin time; AST, aspartate 
aminotransferase; CAD, coronary heart disease; eGFR, estimated glomerular filtration rate; HDL–C, high density liptein cholesterol;  
LDL–C, low density lipoprotein cholesterol; PCO2, partial pressure of carbon dioxide; PCT, procalcitonin; PO2, partial  
pressure of oxygen; NTPRO-BNP, NT pro B-type natriuretic peptide; PT, prothrombin time.

Supplementary Table 2. Features used in diagnostic 
models. The F features were ranked according 
to the AUC in univariate analysis

Features  
of the source Features

EAT original_glszm_ZoneEntropy
Lung original_firstorder_Kurtosis
Lung original_glszm_SmallAreaEmphasis
EAT original_firstorder_Skewness
Lung original_glszm_LargeAreaLowGrayLevelEmphasis
EAT original_glszm_LargeAreaLowGrayLevelEmphasis
Lung original_glcm_MaximalCorrelationCoefficient
EAT original_glszm_ZonePercentage
Lung original_ngtdm_Strength
Lung original_ngtdm_Complexity
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Notably, the operational time for 
segmenting and extracting EAT 
from a patient’s chest CT data on 
a standard computer was less than 
20 seconds, a significant reduction 
compared to  the  approximately 
20 mi nutes required for manual 
extrac tion by a  specialist. This 
efficiency impro vement represents 
a substantial time-saving advantage, 
facilitating mo re convenient EAT 
extraction and mea ningful research 
endeavors.

Limitations
Our study still has a  few 

limitations. Firstly, in the segmen-
tation model, two segmentation 
mo dels need to be trained to comp-
lete the segmentation of the heart 
contour due to the imaging dif-
ference between the two centers’ 
data. Secondly, the number of pa-
tients included in the study was 
relatively small.

The left side of the bar shows the name of each feature,  
and the right side of the bar shows the importance score of the corresponding feature.

Supplementary Figure 1. Feature importance scores


