

Ильдарова Р. А., Школьникова М. А., Термосесов С. А.

 $OC\Pi$ «Научно-исследовательский клинический институт педиатрии им. акад. Ю. Е. Вельтищева» $\Phi\Gamma DOY$ ВО «РНИМУ им. Н. И. Пирогова» Минздрава России, Москва, Россия

Имплантация кардиовертеров-дефибрилляторов у детей с синдромом удлиненного интервала QT: оценка показаний, эффективности и безопасности на основе 10-летнего опыта

Ключевые слова: удлинение интервала QT, кардиовертер-дефибриллятор, внезапная сердечная смерть, желудочковая тахикардия.

Ссылка для цитирования: Ильдарова Р.А., Школьникова М.А., Термосесов С.А. Имплантация кардиовертеров-дефибрилляторов у детей с синдромом удлиненного интервала QT: оценка показаний, эффективности и безопасности на основе 10-летнего опыта. Кардиология. 2018;58(12):52–58.

Резюме

Цель исследования. Оценка особенностей течения синдрома удлиненного интервала QT в детском возрасте до и после имплантации кардиовертера-дефибриллятора (ИКД) и оптимизация показания к ИКД-терапии. Материалы и методы. В исследование были включены 48 детей с синдромом удлиненного интервала QT из 44 неродственных семей, которым был имплантирован кардиовертер-дефибриллятор (28 мальчиков и 20 девочек); средний возраст имплантации составил 11,8±3,8 года. Длительность катамнеза после имплантации ИКД составила в среднем 5,2±2,8 года. В группу сравнения вошли 59 детей с синдромом удлиненного интервала QT из 46 неродственных семей, сопоставимые по возрасту и полу с пациентами основной группы, получающие антиаритмическую терапию β-адреноблокаторами. Оценивали клинические и электрокардиографические характеристики заболевания при первичном визите и в динамике. Результаты. Больные с синдромом удлиненного интервала QT и ИКД в детском возрасте – это преимущественно пробанды, имеющие интервал QTс более 500 мс, рецидивирующие синкопальные состояния и нередко внезапную остановку кровообращения в анамнезе, нуждающиеся в высоких дозах β-адреноблокаторов для контроля желудочковых тахиаритмий. Вывод. Имплантация кардиовертера-дефибриллятора является эффективным и безопасным методом как первичной, так вторичной профилактики внезапной сердечной смерти у детей с синдромом удлиненного интервала QT.

Ildarova R. A., Shkolnikova M. A., Termosesov S. A.

Research Clinical Institute of Pediatrics named after Academician Y. E. Veltishev RNIMU after N.I. Pirogov, Moscow, Russia

IMPLANTATION OF CARDIOVERTER-DEFIBRILLATOR IN CHILDREN WITH LONG-QT SYNDROME: ASSESSMENT OF INDICATIONS, EFFICACY, AND SAFETY BASED ON 10-YEAR EXPERIENCE

Keywords: long QT; cardioverter-defibrillator; sudden cardiac death; ventricular tachycardia.

For citation: Ildarova R.A., Shkolnikova M.A., Termosesov S.A. Implantation of Cardioverter-Defibrillator in Children With Long-QT Syndrome: Assessment of Indications, Efficacy, and Safety Based on 10-Year Experience. Kardiologiia. 2018;58(12):52–58.

SUMMARY

Purpose: to assess specificities of course of the long-QT syndrome in children before and after implantation of cardioverter-defibrillator (ICD), and optimization of indications to ICD-therapy. Materials and methods. We included in this study 48 children with long-QT syndrome from 44 unrelated families (28 boys and 20 girls), who underwent ICD implantation at the mean age 11.8 ± 3.8 years. Mean duration of follow-up after implantation was 5.2 ± 2.8 years. Data from these children were compared with those from 59 children of comparable age and gender with long-QT syndrome from 46 unrelated families receiving antiarrhythmic therapy (β-adrenoblockers). We assessed clinical and electrocardiographic characteristics of the disease obtained at initial visit and their dynamics thereafter. Results. Children with long-QT syndrome and ICD were mainly probands with interval QT longer than 500 ms, recurrent syncope and often history of sudden cardiac arrest requiring high doses of β-adrenoblockers for control of ventricular tachyarrhythmias. Conclusion. ICD implantation is an effective and safe method both of primary and secondary prevention of sudden cardiac death in children with long-QT syndrome.

угрожающие жизни нарушения ритма сердца у детей в большинстве случаев обусловлены первичными электрическими заболеваниями сердца, или наследствен-

ными каналопатиями, объединившими ряд синдромов, манифестные формы которых имеют высокий риск внезапной сердечной смерти [1, 2]. К ним относятся син-

дром удлиненного интервала QT (СУИQT), синдром короткого интервала QT (СКИQТ), синдром Бругада (СБ), катехоламинергическая полиморфная желудочковая тахикардия (КАПЖТ), идиопатическая фибрилляция желудочков, синдром ранней реполяризации и ряд других синдромов с меньшей распространенностью [3]. Все эти синдромы имеют в своей основе наследственные механизмы и, за редким исключением, наследуются аутосомно-доминантно. Гены, ответственные за развитие критических нарушений функций ионных каналов кардиомиоцитов, кроме сердца, экспрессированы также в других органах, что обусловливает многообразие фенотипических проявлений. Спорадические случаи de почо имеются у 5–10% больных [4]. Все это затрудняет раннюю клиническую диагностику, приводит к многочисленным ошибкам, ухудшая прогноз у поздно выявляемых пациентов.

Эпидемиологические исследования, выполненные в последние годы, позволили получить неожиданные данные о распространенности отдельных синдромов, длительное время считавшихся крайне редкими в популяции. Так, была установлена частота выявления манифестных форм СУИQТ: 1 из 2500 новорожденных, что позволяет считать его достаточно распространенным, генетически детерминированным заболеванием с высоким риском внезапной сердечной смерти (ВСС) [5]. Таким образом, риски, присущие данному синдрому, охватывают большую субпопуляцию, сопоставимую по численности с больными сахарным диабетом 2-го типа и даже больше, принимая во внимание, что стертые формы составляют от 10 до 36% в зависимости от генетического варианта [1]. Эти риски могут реализоваться как в детстве, так и в более старшем возрасте.

Клиническая картина СУИQТ варьирует от бессимптомного носительства мутации до выраженной симптоматики в виде рецидивирующих синкопальных состояний и внезапной остановки кровообращений (ВОК). Патогномоничной для СУИQТ является желудочковая тахикардия типа пируэт. ВСС может быть первым проявлением заболеваний, в связи с чем не прекращаются поиски наиболее чувствительных факторов и маркеров, позволяющих прогнозировать риск развития угрожающих жизни осложнений и своевременно обеспечить первичную профилактику ВСС. Современная стратификация риска основана на анализе анамнестических, клинических, электрокардиографических и генетических факторов [6–8].

Терапия СУИQТ предполагает комплексный подход, включающий медикаментозное лечение, направленное на профилактику угрожающих жизни желудочковых аритмий, и немедикаментозное, направленное на профилактику ВСС. Антиаритмическая терапия (ААТ) β-адреноблокаторами является эффективной в плане снижения смертности пациентов с СУИQТ в целом с 70 до 5% [9, 10]. Однако эффективность β-адреноблокаторов различна в зависимости от молекулярно-генетического варианта синдрома. При І молекулярно-генетическом варианте синдрома β-адреноблокаторы являются геноспецифической терапией и предотвращают рецидивы синкопе в 81% случаев, в то время как при вариантах LQT2 и LQT3 их способность предупреждать развитие желудочковой тахикардии значительно ниже [11–13].

Существует группа больных с СУИQТ, характеризующаяся наиболее тяжелым течением заболевания. Она формируется из пациентов с недостаточной эффективностью β -адреноблокаторов, что связано с особенностями молекулярно-генетических механизмов, с более агрессивными или множественными мутациями [14, 15]. Кроме того, к этой группе относятся дети с нарушением режима приема β -адреноблокаторов. У всех этих больных имеется наиболее высокий риск внезапной смерти, и они нуждаются в имплантации кардиовертера-дефибриллятора.

Первые описания терапии, основанной на применении имплантированного кардиовертера-дефибриллятора (ИКД), у молодых пациентов с СУИОТ были опубликованы W.J. Groh и соавт. в 1996 г. [16]. В дальнейшем ИКД были широко внедрены в стандарты лечения пациентов из группы высокого риска с СУИОТ, а устройства стали имплантировать не только больным, перенесшим опасные для жизни осложнения, но и пациентам без симптомов с доказанным риском, например, случаи ВСС в семье или синдрома LQT3 [5, 17, 18]. В настоящее время согласно общепринятым рекомендациям имплантация ИКД в обязательном порядке показана всем больным с этим синдромом (І класс), перенесшим ВОК, либо с документированной желудочковой тахикардией [19], а рецидивирующие на фоне ААТ синкопе относятся ко II классу показаний. Мотивированные срабатывания ИКД имеют от 28 до 68% больных, согласно разным данным [16, 17, 20, 21], что свидетельствует, с одной стороны, об эффективности профилактики ВСС, а с другой - о неэффективности ААТ, несмотря на увеличение доз препаратов на фоне ИКД. Средний возраст больных с СУИОТ и ИКД составляет около 30 лет, при этом описание возможностей ИКД-терапии у детей с СУИQТ ограничивается очень небольшими группами и коротким катамнезом, максимально до 5 лет [16, 20, 22].

В настоящем исследовании особое внимание уделено анализу клинических и электрокардиографических особенностей течения СУИОТ в детском возрасте до и после имплантации ИКД, анализу предикторов мотивированных срабатываний и оптимизации показания к ИКД-терапии. Это первая отечественная публикация, посвященная особенностям ИКД-терапии у детей.

Клинические наблюдения и методы

За период с 01.01.2004 г. по 01.01.2015 г. в Федеральный детский научно-практический центр нарушений ритма сердца НИКИ педиатрии им. академика Ю. Е. Вельтищева были госпитализированы 626 детей с диагнозом наследственный СУИQТ. Кардиовертеры-дефибрилляторы были имплантированы 48 (8%) детям из 44 неродственных семей, 28 мальчикам и 20 девочкам в возрасте от 3 до 17 лет (средний возраст имплантации 11,8±3,8 года). Длительность катамнеза после имплантации ИКД составила от 1 года до 11 лет (в среднем 5,2±2,8 года). Эти больные составили основную группу настоящего исследования.

В группу сравнения были отобраны 59 детей с наследственным СУИОТ без ИКД из 46 неродственных семей, сопоставимые по возрасту и полу с пациентами основной группы, получающие ААТ β-адреноблокаторами (34 мальчика и 25 девочек, средний возраст на момент первого визита в клинику 8,9±4,0 года). Период наблюдения в группе сравнения составил 8,4±5,5 года.

В исследование не включали больных с периодом наблюдения менее 1 года. Молекулярно-генетический анализ был проведен у 98% детей основной группы и 72% больных группы сравнения.

У всех больных оценивали данные анамнеза (наличие и частота синкопальных эпизодов до начала ААТ, наличие эпизодов ВОК, особенности течения заболевания на фоне ААТ); семейный анамнез (наличие СУИQТ и случаев ВСС в семье у родственников І–ІІ степени родства в возрасте до 40 лет). Регистрировали продолжительность корригированного интервала QT (QTc) на стандартной ЭКГ при первом и последующих визитах в клинику, накануне имплантации ИКД, после имплантации и в различных функциональных состояниях, вклю-

чая физическую нагрузку. Отмечали наличие осложнений в раннем и позднем послеоперационном периодах. Мониторинг факторов риска и контроль системы ИКД проводили больным не реже 1 раза в 6 мес.

Математическую обработку данных проводили с применением программы Statistica («StatSoft Inc», США). Сравнение клинических и электрокардиографических параметров в группах выполняли с использованием тестов Стьюдента и Манна–Уитни. Данные представлены в виде среднее ± стандартное отклонение (M±SD). Различия считали статистически значимыми при p<0,05.

Результаты

Основные характеристики детей с ИКД и больных из группы сравнения приведены в табл. 1. В основной группе незначительно преобладали мальчики (58%). Пробанды составили 92% больных с ИКД и 78% больных в группе сравнения; соответственно в основной группе было больше пробандов (p=0,05). Случаи ВСС в молодом возрасте среди членов семьи в обеих группах достоверно не различались.

Достоверно чаще у больных с ИКД определялась синкопальная форма синдрома (92%), а эпизоды ВОК в анамнезе имели 19 (40%) больных. Следует отметить, что у 4 (8%) больных ВОК являлась первым и единственным симптомом заболевания. В 4 случаях во время одного из синкопальных состояний была документирована асистолия. Ожидаемо эпизоды аритмии чаще отмечались у больных основной группы, при этом возраст манифестации клинических проявлений по группам не различался. ИКД в основной группе был имплантирован для вторичной профилактики угрожающих жизни аритмий 44 больным и с целью первичной профилактики – 4.

Таблица 1. Сравнительная характеристика больных с СУИОТ в зависимости от терапии

Параметр	Группа основная (n=48)	Группа сравнения (n=59)	p	
Мальчики	28 (58)	34 (58)	NS	
ВСС в семье	15 (31)	25 (42)	NS	
Синкопе	44 (92)	42 (61)	0,0001	
в том числе ВОК	19 (40)	0	0,0001	
Возраст первого синкопе, годы	7,0±4	6,7±3	NS	
QТс, мс	508±45	460±45	0,0000	
QTc >500 мс	32 (67)	13 (19)	0,0000	
Генотипировано:	47 (98)	42 (72)		
• LQT1	16 (34)	31 (74)	0,0005	
• LQT2	13 (27)	10 (24)	NS	
• LQT3	8 (17)	0	0,01	
• JLN*	5 (11)	0	0,05	
• CM**	5 (11)	1 (2)	0,04	
β-Адреноблокаторы, мг/кг	1,4±0,5	0,8±0,3	0,000	
Комбинированная ААТ	13 (27)	0	_	

Данные представлены в виде абсолютного числа больных (%), если не указано другое. ВСС – внезапная сердечная смерть; * – синдром Джервелла–Ланге–Нильсена; ** – гетерозиготные компаунд-мутации; ААТ – антиаритмическая терапия. Здесь и в табл. 2, 3: СУИQТ – синдром удлиненного интервала QT; ВОК – внезапная остановка кровообращения; QTс – продолжительность корригированного интервала QT; NS – различие не достоверно.

QТс был достоверно больше у пациентов основной группы ($508\pm45\,\mathrm{mc}$ против $460\pm45\,\mathrm{mc}$; p<0,001). Больных с интервалом QTc > $500\,\mathrm{mc}$ было достоверно больше в основной группе. При этом у 3 детей основной группы QTc на ЭКГ покоя не превышал $440\,\mathrm{mc}$.

Среди детей с ИКД преобладали больные с синдромом LQT3 и имевшие компаунд гетеро- или гомозиготные мутации, в том числе с синдромом Джервелла—Ланге— Нильсена, тогда как в группе сравнения в большинстве случаев имел место синдром LQT1 (см. табл. 1).

Большинство детей обеих групп получали монотерапию β -адреноблокаторами. В основной группе 13 (27%) детей дополнительно получали блокатор натриевых каналов в качестве геноспецифической терапии при синдроме LQT3 (54%), либо для дополнительного контроля желудочковых аритмий при синдроме LQT2 (46%).

Средний возраст имплантации ИКД составил $11,8\pm4$ года (от 3 до 17 лет), при этом в 48% случаев ИКД был имплантирован детям в пубертатном возрасте от 11 до 15 лет (см. рис. 1). Показаниями к имплантации ИКД послужили [22]:

- 1. Перенесенная ВОК (класс показаний I);
- Брадисистолические нарушения ритма (атриовентрикулярные блокады, эпизоды асистолии), не позволяющие назначить необходимую дозу β-адреноблокатора;
- 3. Неэффективность ААТ β-адреноблокаторами (констатирована в случае рецидива синкопального состояния на фоне терапии, класс показаний IIa);
- 4. Отрицательная динамика маркеров электрической нестабильности миокарда (продолжительность интервала QTс на ЭКГ покоя >500 мс, появление альтернации зубца Т, желудочковой экстрасистолии).

Наиболее частым показанием к имплантации служила неэффективность β-адреноблокаторов. В 19% случаев основанием для имплантации послужил высокий риск развития угрожающих жизни аритмий.

Желудочковые тахиаритмии были зарегистрированы у 20 (42%) пациентов основной группы и были пред-

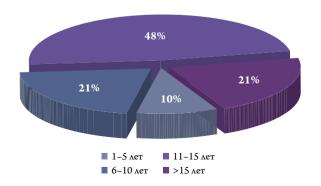


Рис. 1. Распределение больных в зависимости от возраста на период имплантации кардиовертера-дефибриллятора.

ставлены эпизодами устойчивой фибрилляции желудочков (Φ Ж), которые купировались разрядами ИКД, и эпизодами неустойчивой Φ Ж, купировавшимися самопроизвольно.

Среди 19 детей, переживших ВОК, мотивированные срабатывания были у 8 (42%). С той же частотой мотивированные срабатывания отмечались у больных без ВОК (41%). При этом 4 больных, которым ИКД был имплантирован одновременно с назначением ААТ после первого эпизода ВОК, в дальнейшем рецидивов желудочковой тахикардии не имели.

В 12 случаях (25%) сопутствующие нарушения проводимости не позволяли назначить эффективную дозу β-адреноблокатора, в связи с чем этим больным был имплантирован ИКД: в 3 случаях документирована асистолия; синусовая брадикардия зарегистрирована у 4 больных и у 5 – атриовентрикулярная блокада I–III степени. Мотивированных срабатываний у этих детей за период наблюдения не было.

Неэффективность β -адреноблокаторов была наиболее частой причиной имплантации ИКД (56% случаев). У 17 из этих больных после имплантации имелись рецидивы желудочковой тахикардии (63%), а в 12 (60%) случаях документированы бессимптомные эпизоды неустойчивой ЖТ. Достоверно чаще мотивированные срабатывания ИКД зарегистрированы у больных с частыми и повторными (более 5) синкопе в анамнезе (p=0,0001).

Высокий риск рецидивов желудочковой тахикардии на фоне регулярной ААТ послужил основанием для имплантации ИКД у 9 (19%) детей. Мотивированные шоки зарегистрированы в последующем у 3 из этих больных: у больного с синдромом Джервелла-Ланге-Нильсена и у 2 больных с большим числом случаев ВСС в семье. Больному с синдромом Джервелла-Ланге-Нильсена ААТ и имплантация ИКД были назначены одновременно по причине злокачественного течения заболевания.

Осложнения в послеоперационном периоде отмечены у 10 (21%) детей (табл. 2). Подизоляционный перелом предсердного электрода констатирован у 3 детей и у 1 ребенка – перелом обоих электродов. Переломы электродов выявлялись в ходе планового контроля системы ИКД на основании нарушения чувствительности либо повышения импеданса по соответствующему каналу. У 1 ребенка перелом электрода сопровождался немотивированными срабатываниями. Еще у 3 детей развились пролежни ложа ИКД, при этом в одном случае асептическое воспаление было обусловлено аллергией к титану. У 1 ребенка развился лигатурный свищ. Послеоперационный период осложнился дислокацией предсердного электрода в 2 случаях. У 1 ребенка развился гемоперикард вследствие пенетрации предсердного электрода.

Таблица 2. Характеристика послеоперационного течения у больных с СУИQТ, которым был имплантирован кардиовертер-дефибриллятор

Параметр	Значение
Катамнез, годы	5,2±2,8 (от 1 до 11)
Реимплантация	17 (35)
Осложнения: • перелом электродов, % • дислокация электрода, %	10 (21) 4 2
 пролежень ложа и/или лигатурный свищ, % пенетрация, % пневмоторакс, % 	1 1
Немотивированные срабатывания	5 (10)
ΦП	5 (10)

 $\Phi\Pi$ – фибрилляция предсердий.

Всем детям с подизоляционным переломом электрода, дислокацией и пенетрацией предсердных электродов проведена замена электродов. Ребенку с пролежнем ИКД был имплантирован аппарат с золотым покрытием, аллергическая реакция на который отсутствовала.

Немотивированные срабатывания были зарегистрированы у 5 (10%) больных. Причинами стали подизоляционный перелом электрода и наджелудочковая тахикардия с гипервосприятием волны T.

В 5 случаях у больных были зарегистрированы один и более эпизодов фибрилляции предсердий либо наджелудочковой тахикардии. Наджелудочковые тахиаритмии в 2 случаях были причиной немотивированного срабатывания вследствие гипервосприятия волны Т во время приступа, в остальных случаях являлись случайной находкой. Дополнительно к β-адреноблокатору одному ребенку был назначен пропафенон, в остальных случаях была снижена чувствительность по предсердному каналу.

Обсуждение

Исследование продемонстрировало, что у детей с СУИQТ имплантация ИКД проводится по тем же показаниям, что и у взрослых больных с этой патологией, однако имеются существенные отличия.

Основным показанием к имплантации ИКД в любом возрасте, согласно зарубежным исследованиям, является ВОК, что подтверждено международными клиническими рекомендациями (табл. 3). Это грозный симптом, свидетельствующий о высоком риске рецидива ФЖ у больных с СУИОТ [10]. Однако следует отметить, что в нашем исследовании дети с СУИОТ с единственным эпизодом ВОК в анамнезе не имели в дальнейшем мотивированных срабатываний; тогда как у детей с ВОК в сочетании с рецидивирующими синкопе

Таблица 3. Сравнительный анализ показаний к имплантации кардиовертера-дефибриллятора у больных с СУИQТ согласно международным рекомендациям

Класс и уровень рекомендаций	HRS/EHRA/APHRS Expert Consensus Statement on the Diagnosis and Management of Patients with Inherited Primary Arrhythmia Syndromes (2013)	The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (2015)	ACC/AHA/HRS Guideline for the Evaluation and Management of Patients With Syncope (2017)
Класс I Уровень А	Имплантация ИКД в сочетании с β-адреноблокаторами показана пациентам с СУИQТ, перенесшим ВОК	Имплантация ИКД рекомендована пациентам с документированной ФЖ или гемодинамически значимой ЖТ в отсутствие корректируемых причин, получающих адекватную терапию и имеющих благоприятный прогноз для жизни в течение >1 года	_
Класс I Уровень В	_	Имплантация ИКД в сочетании с β -адреноблокаторами показана пациентам с СУИQТ, перенесшим ВОК	_
Класс IIa Уровень В	Имплантация ИКД дополнительно к β-адреноблокаторам может быть рекомендована пациентам с СУИQТ с синкопе и/или ЖТ на фоне терапии β-адреноблокаторами	Имплантация ИКД дополнительно к β -адреноблокаторам может быть рекомендована пациентам с СУИQТ с синкопе и/или ЖТ на фоне адекватной дозы β -адреноблокатора	Имплантация ИКД показана пациентам с СУИQТ, получающим β -адреноблокаторы, и предположительно с аритмическими синкопе или при неэффективности терапии β -адреноблокаторами
Класс IIb Уровень С	_	 Подкожный ИКД может быть альтернативой ИКД, имплантируемому трансвенозно, в случаях, когда затруднен венозный доступ, после деимплантации ИКД по причине инфекции или у молодых пациентов. Имплантация ИКД возможна дополнительно к β-адреноблокаторам у пациентов с бессимптомным СУИQТ с патогенными мутациями в генах КСNH2 или SCNSA и QTc >500 мс 	_

VИКД – имплантируемый кардиовертер-дефибриллятор, ЖТ – желудочковая тахикардия, ФЖ – фибрилляция желудочков.

до имплантации ИКД мотивированные срабатывания случались достоверно чаще. В этом вопросе наиболее взвешенной выглядит точка зрения П. Шварца, который в своем исследовании, посвященном имплантации ИКД таким пациентам, предлагает учитывать период времени, прошедший с момента ВОК или синкопе. Если на фоне терапии этот период превышает 10 лет, то данный критерий следует считать малозначимым для прогноза риска ФЖ [17].

Неэффективность терапии β-адреноблокаторами, по мнению экспертного сообщества, отнесена к классу На показаний [19]. Согласно результатам настоящего исследования, неэффективность ААТ у детей вышла на первое место среди показаний к имплантации ИКД, что объясняется как более тяжелым течением СУИQT с манифестацией в детском возрасте, так и более высоким уровнем физической активности и эмоциональной лабильностью больных детского возраста. Соответственно у детей с СУИОТ труднее подобрать адекватную дозу β-адреноблокатора. Мы наблюдали наибольшее количество мотивированных шоков именно среди пациентов, которым ИКД был имплантирован по причине рецидива синкопе на фоне терапии, что косвенно свидетельствует в пользу значимости этого показания в детском возрасте.

Еще одной серьезной проблемой является низкая приверженность к терапии среди подростков с СУИQТ, на долю которых приходится до 50% имплантаций ИКД в детском возрасте. У 67% больных синкопе рецидивировали вследствие пропуска приема β-адреноблокаторов.

Демографические и клинические характеристики группы несколько различались. Достоверного преобладания лиц мужского или женского пола среди больных с ИКД в нашем исследовании не было, тогда как, по данным литературы, ИКД чаще имплантируют женщинам с СУИQТ [23]. Вероятно, это различие связано с возрастом пациентов, так как известно, что в возрасте до 15 лет мальчики с данным синдромом (особенно LQТ1) имеют более высокий риск ВСС, тогда как после периода полового созревания риск ВСС выше у женщин [24, 25]. Возрастной пик имплантаций приходится у детей на возраст от 11 до 15 лет, что согласуется с данными исследования С. Вегиl [8]. В нашем исследовании среди больных с ИКД детского возраста в основном были пробанды, за единственным

исключением. Их представленность была несколько выше, чем в исследовании W. Zareba и соавт. (92% против 84%) [23].

В большинстве случаев больные имели синкопе до имплантации и около 50% больных пережили ВОК, что также согласуется с данными других авторов [17, 23]. При этом к больным без симптомов как до, так и после имплантации относились преимущественно больные с LQT3, который ассоциируется с высоким риском ВСС во время первого приступа желудочковой тахикардии и с недостаточной эффективностью β-адреноблокаторов, что и вынуждает имплантировать ИКД больным с LQT3 с целью первичной профилактики угрожающих жизни осложнений. В то же время в группе сравнения ожидаемо преобладали дети с LQT1, у которых эффективность медикаментозной терапии β-адреноблокаторами значительно выше и потребность в ИКД-терапии возникает в исключительных случаях.

У 42% больных детей с ИКД были зарегистрированы мотивированные срабатывания. Это значительно чаще, чем описано у взрослых пациентов с СУИQТ. Так, по данным Европейского регистра, только у 28% больных с СУИQТ и ИКД имелись срабатывания [17]. Это можно объяснить более жестким и, возможно, более взвешенным отбором кандидатов на имплантацию ИКД в детском возрасте.

Заключение

Таким образом, данное исследование позволило определить основные характеристики, отличающие больных, нуждающихся в имплантации кардиовертера-дефибриллятора в детском возрасте. Дана сравнительная характеристика детей из группы высокого риска с синдромом укороченного интервала QT и детей, у которых для эффективной профилактики внезапной сердечной смерти было достаточно антиаритмической терапии. Больные с синдромом укороченного интервала QT и имплантируемым кардиовертером-дефибриллятором в детском возрасте - это преимущественно пробанды, у которых интервал QTc более 500 мс, имеются рецидивирующие синкопальные состояния и нередко внезапная остановка кровообращения в анамнезе, и нуждающиеся в высоких дозах β-адреноблокаторов для контроля желудочковых тахиаритмий.

Information about the author:

Research Clinical Institute of Pediatrics named after Academician Y. E. Veltishev, Moscow, Russia

Ildarova Rukizhat A. - PhD, MD.

E-mail: ildarova@pedklin.ru

ЛИТЕРАТУРА/REFERENCES

- Schwartz P.J., Crotti L., Insolia R. Long-QT syndrome: from genetics to management. Circulation 2012;5 (4):868–877. DOI: 10.1161/CIRCEP. 111.962019
- Fuster V., Walsh R.A., Harrington R.A. et al. Genetics of channelopathies and clinical implications. In: Fuster V., Walsh R.A., Harrington R.A. eds. Hurst's The Heart. 13th ed. New York, NY: McGraw Hill 2011:897–910.
- Napolitano C., Bloise R., Monteforte N., Priori S.G. Sudden cardiac death and genetic ion channelopathies long QT, Brugada, short QT, catecholaminergic polymorphic ventricular tachycardia, and idiopathic ventricular fibrillation. Circulation 2012;125:2027–2034. DOI: 10.1161/CIRCULATIONAHA. 111.055947
- Tester D.J., Ackerman M.J. Genetics of long QT syndrome. Methodist Debakey Cardiovasc J 2014;10 (1):29–33.
- Schwartz P.J., Stramba-Badiale M., Crotti L. et al. Prevalence of the Congenital Long QT Syndrome. Circulation 2009; 120 (18):1761–1767.
- Priori S. G., Schwartz P.J., Napolitano C. et al. Risk stratification in the long QT syndrome. N Engl J Med 2003;348:1866–1874. DOI: 10.1056/NEJMoa022147
- Hobbs J. B., Peterson D. R., Moss A. J. et al. Risk of aborted cardiac arrest or sudden cardiac death during adolescence in the long-QT syndrome. JAMA 2006;296:1249–1254. DOI: 10.1001/jama. 296.10.1249
- Berul C.I. Congenital long QT syndromes: who's at the risk for sudden cardiac death? Circulation 2008;117:2178–2180. DOI: 10.1161/CIRCULATIONAHA. 108.772053
- 9. Moss A. J., Schwartz P. J. Sudden death and idiopathic long QT syndrome. Am J Med 1979;66:6–7.
- 10. Moss A.J., Zareba W., Hall W.J. et al. Effectiveness and limitations of beta-blocker therapy in congenital long QT syndrome. Circulation 2000;101:616–623.
- 11. Barsheshet A., Goldenberg I., O-Uchi J. et al. Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of life-threatening events: implications for mutation-specific response to beta-blocker therapy in type 1 long-QT syndrome. Circulation 2012;125:1988–1996. DOI: 10.1161/CIRCULATIONAHA. 111.048041
- 12. Chatrath R., Bell C.M., Ackerman M.J. Beta-blocker therapy failures in symptomatic probands with genotyped long-QT syndrome. Pediatr Cardiol 2004;25:459–465. DOI: 10.1007/s00246-003-0567-3
- Wu J., Naiki N., Ding W. G. et al. A molecular mechanism for adrenergic-induced long QT syndrome. J Am Coll Cardiol 2014;63:819–827. DOI: 10.1016/j. jacc. 2013.08.1648
- 14. Schwartz P.J., Spazzolini C., Crotti L. et al. The Jervell and Lange-Nielsen syndrome. Natural history, molecular basis, and

- clinical outcome. Circulation 2006;113:783–790. DOI: 10.1161/CIRCULATIONAHA. 105.592899
- 15. Mullally J., Goldenberg I., Moss A.J. et al. Risk of life-threatening cardiac events among patients with long QT syndrome and multiple mutations. Heart Rhythm 2013;10 (3):378–382. DOI: 10.1016/j. hrthm. 2012.11.006
- 16. Groh W.J., Silka M.J., Oliver R.P. et al. Use of implantable cardioverter-defibrillators in the congenital long QT syndrome. Am J Cardiol 1996;75:703–706.
- 17. Schwartz P.J., Spazzolini C., Priori S.G. et al. Who Are the Long-QT Syndrome Patients Who Receive an Implantable Cardioverter-Defibrillator and What Happens to Them? Data From the European Long-QT Syndrome Implantable Cardioverter-Defibrillator (LQTS ICD) Registry. Circulation 2010;122:1272–1282. DOI: 10.1161/CIRCULATIONAHA. 110.950147
- 18. Horner J.M., Kinoshita M., Webster T.L. et al. Implantable cardioverter defibrillator therapy for congenital long QT syndrome: a single-center experience. Heart Rhythm 2010;7 (11):1616–1622. DOI: http://dx.doi.org/10.1016/j. hrthm. 2010.08.023
- HRS/EHRA/APHRS Expert Consensus Statement on the Diagnosis and Management of Patients with Inherited Primary Arrhythmia Syndromes. Heart Rhythm 2013;10:1932–1963. DOI: 10.1016/j.hrthm. 2013.05.014
- 20. Silka M.J., Kron J., Dunnigan A., Dick M. Sudden cardiac death and the use of implantable cardioverter-defibrillators in pediatric patients. The Pediatric Electrophysiology Society. Circulation 1993;87:800–807.
- 21. Schwartz P.J., Spazzolini C., Crotti L. All LQT3 patients need an ICD: true or false? Heart Rhythm 2009;6 (1):113–120.
- 22. Goel A. K., Berger S., Pelech A., Dhala A. Implantable cardioverter defibrillator therapy in children with long QT syndrome. Pediatr Cardiol 2004;25 (4):370–378. DOI: 10.1007/s00246-003-0566-4.
- 23. Zareba W., Moss A.J., Daubert J. P. et al. Implantable cardioverter defibrillator in high-risk long QT syndrome patients. J Cardiovasc Electrophysiol 2003;14 (4):337–341.
- 24. Locati E. H., Zareba W., Moss A. J. et al. Age- and Sex-related differences in clinical manifestation in patients with congenital long QT syndrome: findings from International LQTS Registry. Circulation 1998;97:2237–2244.
- 25. Vink A. S., Clur S. B., Wilde A. A. M., Blom N. A. Effect of age and gender on the QTc-interval in healthy individuals and patients with Long-QT syndrome. Trends Cardiovasc Med 2017; pii: S1050–1738 (17) 30116–0. DOI: 10.1016/j. tcm. 2017.07.012

Поступила 15.01.18 (Received 15.01.18)