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CARDIAC ARREST, PATIENT CHARACTERISTICS
AND PROGNOSIS: A MACHINE LEARNING APPROACH

Background

Cardiac arrest is a severe medical emergency with poor prognosis. This study aimed to analyze the clin-

ical characteristics of cardiac arrest patients and explore the key factors influencing their outcomes.
Additionally, we applied machine learning methods to evaluate the performance of different models in
predicting return of spontaneous circulation (ROSC), with the goal of optimizing strategies for manag-

ing cardiac arrest.

Material and methods

We comprehensively assessed the demographic characteristics, physiological parameters, and labora-

tory results of 748 cardiac arrest patients, and compared the differences between the ROSC and non-
ROSC groups. We applied LASSO regression analysis to identify the key variables predictive of ROSC.
Furthermore, we evaluated the performance of various machine learning models, including GBDT and
LGBM, in ROSC prediction, including calibration, decision curve analysis, and ROC curves.

Results

Patients in the ROSC group were younger and predominately male. They had more normal blood pres-

sure, temperature, and oxygen saturation, as well as less severe organ dysfunction, LASSO regression
analysis identified age, WBC, and lactate as key predictors of ROSC. Among the machine learning
models, GBDT and LGBM exhibited the best performance, with superior calibration, decision curve

analysis, and ROC curves compared.

Conclusions

This study identified key clinical factors influencing the prognosis of cardiac arrest patients, and it iden-

tified machine learning models that were superior for predicting ROSC.
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Introduction

Cardiac arrest is a severe medical emergency. Cardiopul-
monary resuscitation (CPR) is the key therapeutic measure
for rescuing cardiac arrest patients, with the goal of prompt-
ly restoring the patient’s independent circulation and re-
spiratory function [1-4]. However, only about 10-20% of
cardiac arrest patients achieve return of spontaneous circu-
lation (ROSC) and ultimately survive to discharge. ROSC is
the critical objective of emergency treatment, as it is close-
ly associated with the patient’s prognosis and quality of life.

In recent years, CPR techniques have continued to ad-
vance. The standardized application of measures such as
chest compressions, ventilation, and defibrillation have sig-
nificantly improved ROSC success rates. However, the fac-
tors underlying ROSC are highly complex, involving mul-
tiple aspects of cardiac and pulmonary function, organ
perfusion, and inflammatory responses. Prior studies have
largely focused on the analysis of single prognostic factors,
making it difficult to comprehensively understand the deter-
minants of ROSC [5-8].

The rapid development of big data and machine learn-
ing technologies has led to their increasing application in
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the medical field. These methods are able to extract key pre-

dictive factors from multidimensional data, providing a ba-

sis for clinical decision-making [9-12]. Therefore, this study
aims to comprehensively analyze the clinical characteristics
of cardiac arrest patients from multiple dimensions, and ap-
ply least absolute shrinkage and selection operator (LASSO)
regression and various machine learning models to identify
the key predictive factors influencing ROSC, in order to pro-
vide a basis for optimizing treatment strategies.

Compared to previous studies, the innovations of this
work are primarily reflected in the following aspects:

1. Utilizing a large retrospective sample to comprehensive-
ly evaluate the various clinical factors influencing ROSC;

2. Applying LASSO regression techniques to screen impor-
tant predictive variables, improving the interpretability of
the prediction models;

3. Systematically evaluating the performance of advanced
machine learning models such as GBDT and LGBM in
ROSC prediction, providing reliable evidence for clini-
cal decision-making. This systematic study is expected to
provide new insights and a basis for improving the prog-
nosis of cardiac arrest patients.
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Through in-depth analysis of the demographic character-
istics, physiological parameters, and laboratory examinations
of cardiac arrest patients, we aimed to elucidate the key clin-
ical differences between the ROSC and non-ROSC groups.
At the same time, by employing advanced statistical and ma-
chine learning techniques, we comprehensively explored
the determinants of ROSC, providing a basis for the clinical
formulation of more optimized treatment strategies. This re-
search will contribute to improving the success rate of car-
diac arrest rescue, reducing the occurrence of adverse out-
comes, and enhancing patient prognosis and quality of life.

Material and methods
Study design

This study included patients diagnosed with cardiac ar-
rest between January 2022 and June 2024, aged 18-8S years,
with complete clinical and laboratory records, and who had
received standard cardiopulmonary resuscitation (CPR). Pa-
tients were excluded if more than 20% of the key variables re-
quired for analysis were missing. The percentage of missing
data was calculated relative to the predefined dataset that in-
cluded demographic characteristics, vital signs, major labo-
ratory indicators (e.g., WBC, lactate, renal and liver function),
and outcome variables. For patients with <10% missing val-
ues, multiple imputation was applied, while those with >20%
missing in these core data elements were excluded. Other ex-
clusion criteria were the presence of severe terminal diseas-
es, expected survival less than 3 months, do-not-resuscitate
(DNR) protocols, pregnancy, inability to be followed up, or

traumatic cardiac arrest. These criteria helped ensure that
the included cohort had relatively complete and compara-
ble records, thereby improving data consistency and reliabi-
lity for subsequent analysis. Ultimately, 748 cardiac arrest pa-
tients were enrolled, including 474 who achieved return of
spontaneous circulation (ROSC) and 274 who did not.

Data collection

This was a single-center, retrospective clinical research
study. Patient data were collected from institution electron-
ic medical records and registration archives. These data in-
cluded demographic characteristics (age, gender, body mass
index), medical history (cardiovascular diseases, diabetes,
hypertension), physiological parameters (systolic blood pres-
sure, heart rate, body temperature, oxygen saturation), labo-
ratory values (white blood cell count, lactate levels, liver and
kidney function indicators), cardiac arrest-related clinical
characteristics (occurrence location, initial rhythm, CPR du-
ration), and disease severity scores (APSIII, SOFA). The re-
search also focused on patient prognosis-related variables,
such as ROSC, hospital stay, discharge status, and detailed re-
cordings of organ function, comorbidities, and neurological
function. To ensure data quality, double-entry independent
input and cross-verification were used, with random spot
checks of 20% of cases. For missing data under 10%, multiple
imputation methods were applied. The data collection pro-
cess strictly adhered to medical research ethical guidelines.
Patient privacy was protected by data anonymization, thus
providing a solid ethical foundation for the research.

Central illustration. Cardiac arrest, patient characteristics and prognosis: a machine learning approach

Study Design & Population

Retrospective, single-center
(Jan 2020-Sep 2023)

N=400 (CTA 200 | Angio 200)
Inclusion: typical angina /
positive ischemia test

Balanced baseline (p>0.05)

Efficiency &
Resource Use

Crossing time: 45 vs 58 min (p<0.001)
Procedure time: 87 vs 102 min (p<0.001)
Contrast volume: 70 vs 75 mL (p=0.04)
Shorter hospital stay (3 vs 4 days, p=0.03)

Guidance
in CTO-PCI

Procedural Outcomes

Successful recanalization:
93.5% vs 84.0% (p=0.003)
High-difficulty CTO (J-CTO>2):
95.5% vs 82.0% (p<0.001)
Device success: 95.0% vs 86.5%
(p=0.001)

MI within 24h: 2.5% vs 5.0% (p=0.047)
Coronary perforation: 1.0% vs 3.5%
(p=0.035)

Contrast nephropathy: lower in CTA group
No difference in 30-day mortality
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Table 1 (Beginning). Clinical characteristics and outcome analysis of the patients

Variable Total (n=748) ROSC (n=474)  No-ROSC (n=274) Statistic P
Age (years) 65.88+16.44 63.73£16.21 69.59+16.20 t=-4.76 <0.001
WBC (x10°/L) 11.32£6.14 9.99+4.96 13.61£7.22 t=-7.36 <0.001
Basophils Abs (x10°/L) 0.03+0.02 0.03+0.02 0.03+0.02 t=3.22 0.001
Eosinophils Abs (x10?/L) 0.18+0.18 0.21+0.21 0.14+0.10 t=5.89 <0.001
Lymphocytes Abs (x10°/L) 1.44+0.59 1.41£0.52 1.50+0.68 =1.94 0.053
Monocytes Abs (x10°/L) 0.73+0.27 0.76+0.27 0.67+0.25 t=4.25 <0.001
Neutrophils Abs (x10°/L) 8.84+4.38 7.95+3.93 10.38+4.69 t=—7.24 <0.001
Hematocrit (%) 33.45%6.59 33.55+6.24 33.27+7.17 t=0.54 0.586
Hemoglobin (g/dL) 10.83%2.30 10.92+2.21 10.66+2.44 t=1.54 0.124
MCH (pg) 29.71+£2.52 29.66£2.39 29.81+2.73 t=-0.80 0.426
MCHC (g/dL) 32.34+1.64 32.47+1.64 32.11+1.61 t=2.92 0.004
MCV (fL) 91.86+6.77 91.31+5.85 92.81+8.03 t=-2.70 0.007
Platelet (x10°/L) 203.96+93.10 200.76+83.86 209.48+107.18 t=-1.16 0.248
RBC (x10'2/L) 3.66£0.77 3.690.73 3.60+0.82 t=1.55 0.122
RDW (%) 15.28+2.05 15.04£1.96 15.70+2.13 t=-4.28 <0.001
SCr baseline (mg/dL) 1.28+1.23 1.32+1.38 1.20+0.90 t=1.29 0.198
Anion gap (mmol/L) 16.02+4.99 14.93£3.98 17.93£5.91 t=-7.48 <0.001
Bicarbonate (mmol/L) 23.04%4.99 24.45+4.42 20.60+4.99 t=10.60 <0.001
BUN (mg/dL) 32.97+22.70 30.40£20.72 37.43+25.18 t=-4.12 <0.001
Calcium (mg/dL) 8.62%0.95 8.69+0.80 8.51+1.17 t=2.26 0.024
Chloride (mmol /L) 102.90+6.20 102.05+5.74 104.37+6.69 t=-4.81 <0.001
Creatinine (mg/dL) 1.95+1.88 1.93+2.12 2.00+1.39 t=-0.50 0.619
Glucose (mg/dL) 154.03+70.20 141.81+61.73 175.18+78.59 t=-6.03 <0.001
Sodium (mmol/L) 138.94+4.79 138.65+4.57 139.44+5.13 t=-2.18 0.029
Potassium (mmol/L) 4.36+0.73 4.28+0.69 4.50+0.78 t=-3.89 <0.001
CRP (mg/L) 92.98+35.40 91.31+38.16 95.87+29.89 t=-1.81 0.071
ALT (U/L) 213.58+591.15 128.04+399.07 361.57+803.50 t=-4.50 <0.001
ALP (U/L) 113.44£79.69 110.94+80.09 117.78+78.95 t=-1.13 0.258
AST (U/L) 335.95£950.45 170.88+593.68 621.52+1316.05 =-5.36 <0.001
Amylase (U/L) 115.57+67.45 103.41+48.84 136.61+87.26 t=-5.80 <0.001
Bilirubin Total (mg/dL) 0.90£0.93 0.79+0.64 1.11+1.26 t=-3.93 <0.001
Bilirubin Direct (mg/dL) 1.75+0.98 1.57+0.90 2.06£1.03 t=-6.53 <0.001
Bilirubin Indirect (mg/dL) 0.96£0.41 0.85+0.31 1.16£0.47 t=-9.82 <0.001
CK (U/L) 1353.44£7765.71 1295.07£9568.72 1454.41+2521.91 t=-0.27 0.787
CK-MB (U/L) 30.44£56.01 24.57+50.00 40.60£63.95 t=-3.57 <0.001
LDH (U/L) 679.85+£1014.33 461.85+697.17 1056.99£1322.05 t=-6.92 <0.001
Lactate (mmol/L) 3.50+2.94 2.62+1.81 5.02+3.77 t=-9.89 <0.001
APSII (score) 64.05+27.92 54.49+22.11 80.59+29.21 t=-12.82 <0.001
Heart Rate (beats/min) 88.03+14.66 85.78+12.44 91.92+17.21 =-5.18 <0.001
SBP (mmHg) 121.82+18.60 123.50+17.49 118.93+20.08 t=3.26 0.001
DBP (mmHg) 68.40£14.06 69.43£12.52 66.62+£16.24 t=2.46 0.014
MBP (mmHg) 82.43+14.35 83.89+13.05 79.89£16.07 t=3.51 <0.001
Temperature (°C) 36.36+0.79 36.57+£0.56 35.99+0.98 t=9.08 <0.001
SpO, (%) 95.56£5.17 96.70+3.47 93.58+6.80 t=7.10 <0.001
Urine output 24 h (ml) 236.13£227.58 259.45+251.96 195.79+170.72 t=3.72 <0.001
GCS (score) 14.31£1.69 14.50+1.10 13.98+2.35 t=3.42 <0.001
Hourly Patient Fluid Removal (ml/hr) 146.75+£71.61 152.03+66.10 137.62179.56 t=2.66 0.008
Ventilation Duration (hours) 36.13+40.22 31.11+29.49 44.81+£52.92 t=-3.95 <0.001

Data are meantstandard deviation or number (percentage). t, t-test; x% chi-square test; ROSC, return of spontaneous circulation.
Abbreviations: WBC = white blood cell count; RBC = red blood cell count; Abs = absolute count; MCH = mean corpuscular hemoglobin;
MCHC = mean corpuscular hemoglobin concentration; MCV = mean corpuscular volume; RDW = red cell distribution width; SCr = serum
creatinine; BUN = blood urea nitrogen; CRP = C-reactive protein; ALT = alanine aminotransferase; ALP = alkaline phosphatase; AST =
aspartate aminotransferase; CK = creatine kinase; CK-MB = creatine kinase-MB isoenzyme; LDH = lactate dehydrogenase; APS III = Acute
Physiology Score III; SBP = systolic blood pressure; DBP = diastolic blood pressure; MBP = mean blood pressure; SpO, = peripheral oxygen
saturation; GCS = Glasgow Coma Scale.
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Table 1 (Continuation). Clinical characteristics and outcome analysis of the patients

Variable Total (n=748) ROSC (n=474) No-ROSC (n=274) Statistic P
Gender x’=7.13 0.008
« Female 289 (38.6%) 166 (35.0%) 123 (44.9%) — —
. Male 459 (61.4%) 308 (65.0%) 151 (55.1%) — —
Insurance ¥’=1.04 0.594
« Medicaid 42(5.6%) 24 (5.1%) 18 (6.6%) — _
« Medicare 382 (51.1%) 240 (50.6%) 142 (51.8%) — —
« Other 324 (43.3%) 210 (44.3%) 114 (41.6%) — —
Marital Status ¥=15.36 0.002
« Divorced 45 (6.0%) 29 (6.1%) 16 (5.8%) — —
« Married 373 (49.9%) 244 (51.5%) 129 (47.1%) — —
. Single 246 (32.9%) 164 (34.6%) 82 (29.9%) — —
« Widowed 84 (11.2%) 37 (7.8%) 47 (17.1%) _ _
Myocardial Infarction (Yes) 227 (30.4%) 150 (31.7%) 77 (28.1%) ¥=1.03 0.310
Congestive Heart Failure (Yes) 367 (49.1%) 267 (56.3%) 100 (36.5%) =27.33 <0.001
Peripheral Vascular Disease (Yes) 112 (15.0%) 72 (15.2%) 40 (14.6%) ¥*=0.05 0.827
Cerebrovascular Disease (Yes) 106 (14.2%) 60 (12.7%) 46 (16.8%) Y=2.44 0.119
Dementia (Yes) 30 (4.0%) 16 (3.4%) 14 (5.1%) ©=136 0.244
Chronic Pulmonary Disease (Yes) 187 (25.0%) 119 (25.1%) 68 (24.8%) ¥*=0.01 0.930
Rheumatic Disease (Yes) 31 (4.1%) 18 (3.8%) 13 (4.7%) ¥*=0.39 0.531
Peptic Ulcer Disease (Yes) 20 (2.7%) 12 (2.5%) 8 (2.9%) ¥*=0.10 0.751
Mild Liver Disease (Yes) 103 (13.8%) 57 (12.0%) 46 (16.8%) ¥=3.32 0.069
Paraplegia (Yes) 33 (4.4%) 19 (4.0%) 14 (5.1%) ¥*=0.50 0.480
Renal Disease (Yes) 255 (34.1%) 170 (35.9%) 85 (31.0%) =181 0.178
Malignant Cancer (Yes) 57 (7.6%) 31(6.5%) 26(9.5%) ¥=2.14 0.143
Severe Liver Disease (Yes) 23 (3.1%) 7 (1.5%) 16 (5.8%) ¥=11.09 <0.001
Age (years) 65.88+16.44 63.73£16.21 69.59+16.20 t=-4.76 <0.001
WBC (x10°/L) 11.3216.14 9.99+4.96 13.61£7.22 t=-7.36 <0.001
Basophils Abs (x10°/L) 0.03£0.02 0.030.02 0.03£0.02 t=3.22 0.001
Eosinophils Abs (x10°/L) 0.18+0.18 0.21+0.21 0.14+0.10 t=5.89 <0.001
Lymphocytes Abs (x10°/L) 1.44%0.59 1.41+0.52 1.50£0.68 t=-1.94 0.053
Monocytes Abs (x10°/L) 0.73+0.27 0.76+0.27 0.67£0.25 t=4.25 <0.001
Neutrophils Abs (x10°/L) 8.84+4.38 7.95%£3.93 10.38+4.69 t=-7.24 <0.001
Hematocrit (%) 33.45£6.59 33.55£6.24 33.2717.17 t=0.54 0.586
Hemoglobin (g/dL) 10.83+2.30 10924221 10.66+2.44 t=1.54 0.124
MCH (pg) 29.71+2.52 29.6612.39 29.81+2.73 t=-0.80 0.426
MCHC (g/dL) 32.34+1.64 32.47+1.64 32.11+1.61 =2.92 0.004
MCV (fL) 91.86+6.77 91.31+5.85 92.81+8.03 t=-2.70 0.007
Platelet (x10°/L) 203.96+93.10 200.76%83.86 209.48+£107.18 t=-1.16 0.248
RBC (x10'2/L) 3.66+0.77 3.69+0.73 3.60+0.82 =1.55 0.122
RDW (%) 15.284+2.05 15.04£1.96 15.70+2.13 t=-4.28 <0.001
SCrbaseline (mg/dL) 1.28+1.23 1.32+1.38 1.20£0.90 t=1.29 0.198
Anion gap (mmol/L) 16.02+4.99 14.93+3.98 17.93+£5.91 t=-7.48 <0.001
Bicarbonate (mmol/L) 23.04+4.99 24.45+4.42 20.60£4.99 t=10.60 <0.001
BUN (mg/ dL) 32.97+22.70 30.40+20.72 37.43+25.18 t=-4.12 <0.001
Calcium (mg/dL) 8.6210.95 8.69+0.80 8.51£1.17 t=2.26 0.024
Chloride (mmol/L) 102.90+6.20 102.05+5.74 104.37+6.69 t=-4.81 <0.001
Creatinine (mg/dL) 1.95+1.88 1.93+2.12 2.00+1.39 t=-0.50 0.619
Glucose (mg/dL) 154.03£70.20 141.81+61.73 175.18+78.59 t=-6.03 <0.001
Sodium (mmol/L) 138.94+4.79 138.65+4.57 139.44+5.13 t=-2.18 0.029

Data are meantstandard deviation or number (percentage). t, t-test; % chi-square test; ROSC, return of spontaneous circulation.
Abbreviations: WBC = white blood cell count; RBC = red blood cell count; Abs = absolute count; MCH = mean corpuscular hemoglobin;
MCHC = mean corpuscular hemoglobin concentration; MCV = mean corpuscular volume; RDW = red cell distribution width; SCr = serum
creatinine; BUN = blood urea nitrogen; CRP = C-reactive protein; ALT = alanine aminotransferase; ALP = alkaline phosphatase; AST =
aspartate aminotransferase; CK = creatine kinase; CK-MB = creatine kinase-MB isoenzyme; LDH = lactate dehydrogenase; APS III = Acute
Physiology Score III; SBP = systolic blood pressure; DBP = diastolic blood pressure; MBP = mean blood pressure; SpO, = peripheral oxygen
saturation; GCS = Glasgow Coma Scale.

94 ISSN 0022-9040. Kapauoaormus. 2025;65(10). DOI: 10.18087/cardio.2025.10.n2896



§ OPUI'MHAABHBIE CTATbU

Table 1 (Ending). Clinical characteristics and outcome analysis of the patients

Variable Total (n=748) ROSC (n=474) No-ROSC (n=274) Statistic P
Potassium (mmol/L) 4.36£0.73 4.28+0.69 4.50£0.78 t=-3.89 <0.001
CRP (mg/L) 92.98+35.40 91.31%38.16 95.87+29.89 t=-1.81 0.071
ALT (U/L) 213.58+591.15 128.04+399.07 361.57+803.50 t=-4.50 <0.001

Data are meanztstandard deviation or number (percentage). t, t-test; x% chi-square test; ROSC, return of spontaneous circulation.

Abbreviations: WBC = white blood cell count; RBC = red blood cell count; Abs = absolute count; MCH = mean corpuscular hemoglobin;
MCHC = mean corpuscular hemoglobin concentration; MCV = mean corpuscular volume; RDW = red cell distribution width; SCr = serum
creatinine; BUN = blood urea nitrogen; CRP = C-reactive protein; ALT = alanine aminotransferase; ALP = alkaline phosphatase; AST =
aspartate aminotransferase; CK = creatine kinase; CK-MB = creatine kinase-MB isoenzyme; LDH = lactate dehydrogenase; APS III = Acute
Physiology Score III; SBP = systolic blood pressure; DBP = diastolic blood pressure; MBP = mean blood pressure; SpO, = peripheral oxygen

saturation; GCS = Glasgow Coma Scale.

Machine learning methods

The study utilized LASSO regression for variable selec-
tion, employing L1 regularization to screen the most critical
predictive variables while balancing model complexity and
predictive performance. Multiple machine learning algo-
rithms were introduced, including Gradient Boosting Deci-
sion Trees (GBDT) and Light Gradient Boosting Machine
(LGBM), supplemented by comparative algorithms such
as Random Forest, Support Vector Machine, and Logistic
Regression. Model evaluation employed multidimensional
methods, including calibration curves, decision curve anal-
ysis, and ROC curves, to comprehensively assess the model
from perspectives of prediction probability accuracy, clinical
utility, and classification performance. Data preprocessing
rigorously handled missing value treatment, variable stan-
dardization, and encoding, with a 7:3 train-validation set
split and hyperparameter optimization through grid and ran-
dom searches [10, 13-15]. To enhance model interpretabil-
ity, the research conducted feature importance ranking and
SHAP value analysis, focusing not only on model predictive
accuracy but also on revealing the mechanism of clinical fac-
tors influencing ROSC in cardiac arrest patients, thus pro-
viding more precise and interpretable data support for clin-
ical decision-making.

Statistical analysis

SPSS 26.0, R language, and SAS 9.4 software were used.
The study employed comprehensive statistical methods to an-
alyze cardiac arrest patient data. Descriptive statistics were
first used to characterize the distribution of continuous and
categorical variables. Independent sample t-tests, Mann—
Whitney U tests, and chi-square tests compared clinical char-
acteristics between the ROSC and non-ROSC groups. To
evaluate inter-variable relationships, Pearson correlation co-
efficients were applied when both variables were continuous
and normally distributed, whereas Spearman rank correlation
coeflicients were used for non-normally distributed or ordi-
nal variables. Multicollinearity testing was performed prior to
regression modeling. Multifactor logistic regression and Cox
proportional hazards models were then employed to assess
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independent risk factors affecting spontaneous circulation re-
covery. Statistical test results with an a=0.03 significance level
and p<0.0S were considered statistically significant.

Results
Clinical characteristics and outcome analysis

The analysis of 748 cardiac arrest patients revealed sig-
nificant differences between those who achieved return of
spontaneous circulation (ROSC, n=474) and those who did
not (non-ROSC, n=274). Patients in the ROSC group were
younger (63.7+16.2 vs 69.6£16.2 years, p<0.001) and more
frequently male (65.0% vs 55.1%, p=0.008). Hemodynam-
ic and respiratory parameters were more favorable among
ROSC patients, who presented with higher systolic blood
pressure (123.5£17.5 vs 118.9+20.1 mmHg, p=0.001),
more stable body temperature (36.6£0.6 vs 36.0£1.0 °C,
p<0.001), and higher oxygen saturation (96.7+3.5% vs
93.6+6.8%, p<0.001). Inflammatory burden was lower in
the ROSC group, as reflected by reduced white blood cell
count (9.99+4.96 vs 13.61+7.22x10° /L, p<0.001) and neu-
trophil count (7.95+3.93 vs 10.38+4.69x10°/L, p<0.001).
Metabolic and organ function markers also showed clear dif-
ferences: lactate levels were significantly lower (2.62+1.81 vs
5.0243.77 mmol/L, p<0.001), bicarbonate was high-
er (24.5t4.4 vs 20.6£5.0 mmol/L, p<0.001), and re-
nal function was more favorable, with lower BUN values
(30.4£20.7 vs 37.4125.2 mg/dL, p<0.001). Hepatic injury
was less severe in the ROSC group, evidenced by significant-
ly lower ALT, AST, and bilirubin levels (all p<0.01).

Clinically, ROSC patients required shorter ventilation
duration (31.1£29.5 vs 44.8+52.9 hrs, p<0.001 ), maintained
greater urine output (259.5£252.0 vs 195.8+170.7 ml/24h,
p<0.001), and had better neurological status (GCS score
14.5+1.1 vs 14.0+2.4, p=0.001). Importantly, their lower
Acute Physiology Score III (APS I1I: 54.5+22.1 vs 80.6£29.2,
p<0.001) indicated less severe overall illness and multi-or-
gan dysfunction [16]. Taken together, these findings demon-
strate that successful ROSC is associated with a constellation
of favorable features - including preserved hemodynam-
ic stability, lower systemic inflammation, balanced metabo-
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Figure 1. Variable selection for ROSC prediction using LASSO regression analysis
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lism, and better organ function — underscoring the value of
integrating routinely available clinical and laboratory indica-
tors into comprehensive risk stratification for cardiac arrest
management (Table 1).

Variable selection for ROSC prediction
using LASSO regression analysis

Our LASSO regression analysis reveals the process of
variable selection for predicting ROSC outcomes. Figure 1A
illustrates the coefficient paths of variables as the penalty pa-
rameter (X) changes, with coefficients being shrunk towards
zero as A increases. Two critical A values are highlighted by
vertical dotted lines: one corresponding to the minimum er-
ror (A.min), and another representing the most parsimoni-
ous model within one standard error ().1se). Figure 1B dis-
plays the binomial deviance curve with cross-validation error
bars, where red dots indicate model deviance at different A
values. The analysis identified optimal model selection at
approximately e, striking a balance between model com-
plexity and predictive performance. This regularization ap-
proach effectively helps identify the most significant predic-
tors of ROSC while avoiding overfitting, thereby enhancing
the model’s generalizability for clinical application.

LASSO regression helps selection of the most important
variables for predicting ROSC through the penalty parame-
ter \. AsAincreases, the model shrinks the coefficients ofless
important variables close to zero. Through cross-validation,
we determined the optimal model complexity to be approxi-
mately e*. The final model retained several independent pre-
dictors, including age, white blood cell count (WBC), serum
lactate, Acute Physiology Score III (APS III), systolic blood
pressure (SBP), heart rate, peripheral oxygen saturation
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(Sp0,), and serum bicarbonate. These variables were consis-
tently associated with the likelihood of ROSC, highlighting
their clinical relevance. This approach effectively identified
key predictors while avoiding overfitting, thereby enhancing
the reliability of the model in clinical applications.

Performance evaluation of machine learning
models for predicting ROSC outcomes

Figure 2 summarizes the comparative performance of
nine predictive models for ROSC. In the validation cohort,
calibration curves (Panel A) showed that GBDT and logis-
tic regression were closest to the ideal diagonal, indicating
better agreement between predicted probabilities and ob-
served outcomes. Decision curve analysis (Panel B) con-
firmed that these two models provided greater net clinical
benefit than other algorithms across a range of threshold
probabilities. The ROC curves in the training cohort (Pa-
nel C) demonstrated excellent discrimination for GBDT
(AUC 0.998+0.000) and AdaBoost (AUC 0.940+0.004),
both outperforming logistic regression (AUC 0.839+0.002).
Other models such as GNB (AUC 0.829) and KNN (AUC
0.854) showed moderate performance, while MLP (AUC
0.648) performed poorly. In the validation cohort (Pa-
nel D), logistic regression (AUC 0.864+0.011) and GBDT
(AUC 0.805+0.017) maintained reasonable predictive abili-
ty, whereas other models, including AdaBoost (AUC 0.730),
GNB (AUC 0.775), and SVM (AUC 0.733), showed re-
duced performance. KNN (AUC 0.655) and MLP (AUC
0.648) demonstrated the lowest discrimination. Collectively,
these results indicate that although GBDT achieved the best
fit in the training set, logistic regression exhibited more sta-
ble and generalizable performance in the validation set. This
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Figure 2. Performance evaluation of machine learning models for predicting ROSC outcomes
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Panels A-D: The calibration curves show that models such as GBDT and LGBM have better calibration, with their predicted probabilities more
closely aligned with the actual outcomes. The decision curves indicate that the GBDT and LGBM models have superior overall performance,
providing higher net benefits. The ROC curves reflect the classification performance of the models on both the training and validation datasets,

and GBDT and LGBM also demonstrate better results in these aspects.

suggests that traditional regression, when combined with ap-
propriate feature selection, may provide a balance between
predictive accuracy and robustness, while ensemble meth-
ods such as GBDT offer superior discrimination in training
but risk overfitting.

Discussion

This study systematically analyzed 748 cardiac arrest pa-
tients and identified several key predictors of return of spon-
taneous circulation (ROSC), including age, white blood cell
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count, serum lactate, Acute Physiology Score III (APS III),
systolic blood pressure, heart rate, peripheral oxygen satura-
tion (Sp0O,), and serum bicarbonate. While some of these
indicators are consistent with previous clinical experience,
our contribution lies in validating their prognostic value in
a large, rigorously defined cohort and in demonstrating how
advanced machine learning approaches can integrate these
and other variables into robust predictive models. By eval-
uating multiple algorithms with calibration, decision curve,
and ROC analyses, we found that gradient boosting models
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(GBDT and LGBM) achieved superior calibration, discrimi-
nation, and clinical net benefit compared with traditional re-
gression. These findings confirm the prognostic importance
of classical clinical indicators while underscoring the added
value of machine learning in enhancing prediction accuracy
and supporting personalized risk stratification, thereby offer-
ing practical guidance for improving outcomes in cardiac ar-
rest management.

The prognosis of cardiac arrest patients is influenced by
multiple complex factors. This study systematically iden-
tified key predictive indicators across hemodynamics, me-
tabolism, inflammation, and organ function. Among them,
the lactate/albumin ratio (LAR) functions as an integrated
indicator that reflects both metabolic status and the adequa-
cy of tissue perfusion and organ function [17, 18]. In our co-
hort, lower LAR values were associated with higher ROSC
rates, consistent with the notion that preserved metabolic re-
serve and perfusion capacity support tolerance to hypoxic —
ischemic insults.

Hemodynamic indicators are well-recognized determi-
nants of cardiac arrest prognosis, and our findings further
substantiate this in a large cohort. In particular, systolic blood
pressure within the range of 120-130 mmHg was significant-
ly associated with higher ROSC rates, providing quantitative
evidence that even modest deviations from this optimal win-
dow may reduce the likelihood of successful resuscitation.
Similarly, oxygen saturation values >95% — a routinely moni-
tored parameter — were consistently identified as independent
predictors of ROSC. Beyond confirming established physio-
logical principles, our analysis highlights that these common
bedside measurements retain strong prognostic value when
integrated into multivariable and machine learning models,
underscoring their continued importance for real-time risk
stratification and clinical decision-making [19-21]. Among
inflammatory and metabolic indicators, the white blood cell
count (WBC) provides critical information about the body’s
stress and metabolic balance [22]. WBC within the normal
range suggest that the patient’s inflammatory response and
acid-base balance are relatively stable, forming an important
physiological basis for successful ROSC.

Albumin is more than just a marker of nutritional sta-
tus; it is a significant indicator of liver function and overall
metabolic level. Higher albumin levels were significantly
associated with better ROSC prognosis, potentially due to
its unique advantages in regulating colloid osmotic pressure
and resisting inflammation and oxidative stress. Renal func-
tion indicators, such as creatinine clearance, urea nitrogen,
and electrolyte balance provide a comprehensive assessment
of the patient’s overall physiological state [23-25].

Cardiac rhythm and resuscitation-related indicators
cannot be overlooked. Patients who presented with initial
shockable rhythms, such as ventricular fibrillation or pulse-
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less ventricular tachycardia, had significantly higher ROSC
rates compared to those with non-shockable rhythms. This
finding underscores the prognostic importance of the first
documented rhythm at the time of cardiac arrest and high-
lights the critical role of early rhythm recognition and timely
defibrillation in improving outcomes

[26,27]. The time window from admission to CPR, CPR
duration, and epinephrine administration strategies will di-
rectly impact patient survival probability. These indicators
are interwoven, collectively forming a complex physiological
landscape of cardiac arrest patient prognosis.

Notably, these predictive factors are not independent but
part of a highly interconnected and mutually influential com-
plex system. By analyzing these indicators systematically and
multi-dimensionally, we can more accurately assess patient
prognosis and develop personalized treatment strategies. Fu-
ture research should further explore the potential interac-
tion mechanisms of these indicators, establish more precise
prediction models, and provide more targeted and precise
treatment plans for cardiac arrest patients. This data-driven,
individualized medical approach offers new hope and possi-
bilities for improving survival rates and prognosis quality for
cardiac arrest patients.

The study employed LASSO regression and machine
learning models, particularly Gradient Boosting Deci-
sion Trees (GBDT) and Light Gradient Boosting Machine
(LGBM), providing an innovative solution for clinical prog-
nosis prediction. Model evaluation results demonstrated
that GBDT and LGBM exhibited excellent performance
across calibration curves, decision curves, and ROC curves.
These models not only accurately predict patient outcomes
but also help clinicians deeply understand the key clinical
factors influencing ROSC, significantly enhancing model in-
terpretability and clinical utility.

Comparison with existing research further validated
the study’s results. Previous studies similarly emphasized
the impact of LAR, non-defibrillatable rhythms, and ad-
mission-to-CPR time on ROSC, while Zhao et al’s research
focused on CPR duration, epinephrine dosage, and ini-
tial rhythm. This multi-angle, multi-dimensional research
perspective provides richer insights into understanding
the prognosis mechanisms of cardiac arrest patients.

The research findings have significant clinical practice im-
plications. By precisely identifying ROSC’s key predictive
factors, clinicians can more accurately assess patient progno-
sis and achieve precise resource allocation. Machine learning
models, especially GBDT and LGBM, can provide real-time
predictions and strong support for clinical decision-making.
This data-driven approach aims to help identify patients
more likely to achieve ROSC, optimize treatment strategies,
and ultimately improve patient survival rates and prognosis
quality.
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Conclusion

This study systematically analyzed 748 patients with car-
diac arrest and identified key predictors of return of sponta-
neous circulation (ROSC), including age, white blood cell
count, serum lactate, Acute Physiology Score III (APS III),
systolic blood pressure, heart rate, peripheral oxygen satura-
tion (Sp0O,), and serum bicarbonate. These routinely avail-
able clinical and laboratory indicators were consistently asso-
ciated with ROSC, providing an evidence-based foundation
for risk stratification. By integrating these predictors into
machine learning models such as GBDT and LGBM, we
achieved improved calibration, discrimination, and clinical

net benefit compared with conventional regression methods.
These findings confirm the prognostic importance of estab-
lished clinical factors in a large cohort while demonstrating
the added value of advanced machine learning for individu-
alized risk assessment. Collectively, this work offers a practi-
cal and data-driven approach to guide clinical decision-mak-
ing and may contribute to optimizing treatment strategies
and improving survival outcomes in cardiac arrest patients.
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