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Cardiac Arrest, Patient Characteristics 
and Prognosis: a Machine Learning Approach

Background	 Cardiac arrest is a severe medical emergency with poor prognosis. This study aimed to analyze the clin-
ical characteristics of cardiac arrest patients and explore the  key factors influencing their outcomes. 
Additionally, we applied machine learning methods to evaluate the performance of different models in 
predicting return of spontaneous circulation (ROSC), with the goal of optimizing strategies for manag-
ing cardiac arrest.

Material and methods	 We comprehensively assessed the demographic characteristics, physiological parameters, and labora-
tory results of 748 cardiac arrest patients, and compared the differences between the ROSC and non-
ROSC groups. We applied LASSO regression analysis to identify the key variables predictive of ROSC. 
Furthermore, we evaluated the performance of various machine learning models, including GBDT and 
LGBM, in ROSC prediction, including calibration, decision curve analysis, and ROC curves.

Results	 Patients in the ROSC group were younger and predominately male. They had more normal blood pres-
sure, temperature, and oxygen saturation, as well as less severe organ dysfunction, LASSO regression 
analysis identified age, WBC, and lactate as key predictors of ROSC. Among the  machine learning 
models, GBDT and LGBM exhibited the best performance, with superior calibration, decision curve 
analysis, and ROC curves compared.

Conclusions	 This study identified key clinical factors influencing the prognosis of cardiac arrest patients, and it iden-
tified machine learning models that were superior for predicting ROSC.
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Introduction
Cardiac arrest is a severe medical emergency. Cardiopul-

monary resuscitation (CPR) is the key therapeutic measure 
for rescuing cardiac arrest patients, with the goal of prompt-
ly restoring the  patient’s independent circulation and re-
spiratory function [1–4]. However, only about 10–20 % of 
cardiac arrest patients achieve return of spontaneous circu-
lation (ROSC) and ultimately survive to discharge. ROSC is 
the critical objective of emergency treatment, as it is close-
ly associated with the patient’s prognosis and quality of life.

In recent years, CPR techniques have continued to ad-
vance. The  standardized application of measures such as 
chest compressions, ventilation, and defibrillation have sig-
nificantly improved ROSC success rates. However, the  fac-
tors underlying ROSC are highly complex, involving mul-
tiple aspects of cardiac and pulmonary function, organ 
perfusion, and inflammatory responses. Prior studies have 
largely focused on the  analysis of single prognostic factors, 
making it difficult to comprehensively understand the deter-
minants of ROSC [5–8].

The  rapid development of big data and machine learn-
ing technologies has led to their increasing application in 

the medical field. These methods are able to extract key pre-
dictive factors from multidimensional data, providing a  ba-
sis for clinical decision-making [9–12]. Therefore, this study 
aims to comprehensively analyze the clinical characteristics 
of cardiac arrest patients from multiple dimensions, and ap-
ply least absolute shrinkage and selection operator (LASSO) 
regression and various machine learning models to identify 
the key predictive factors influencing ROSC, in order to pro-
vide a basis for optimizing treatment strategies.

Compared to previous studies, the innovations of this 
work are primarily reflected in the following aspects:
1.	 Utilizing a large retrospective sample to comprehensive-

ly evaluate the various clinical factors influencing ROSC;
2.	 Applying LASSO regression techniques to screen impor-

tant predictive variables, improving the interpretability of 
the prediction models;

3.	 Systematically evaluating the  performance of advanced 
machine learning models such as GBDT and LGBM in 
ROSC prediction, providing reliable evidence for clini-
cal decision-making. This systematic study is expected to 
provide new insights and a basis for improving the prog-
nosis of cardiac arrest patients.
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Through in-depth analysis of the demographic character-

istics, physiological parameters, and laboratory examinations 
of cardiac arrest patients, we aimed to elucidate the key clin-
ical differences between the ROSC and non-ROSC groups. 
At the same time, by employing advanced statistical and ma-
chine learning techniques, we comprehensively explored 
the determinants of ROSC, providing a basis for the clinical 
formulation of more optimized treatment strategies. This re-
search will contribute to improving the  success rate of car-
diac arrest rescue, reducing the  occurrence of adverse out-
comes, and enhancing patient prognosis and quality of life.

Material and methods
Study design

This study included patients diagnosed with cardiac ar-
rest between January 2022 and June 2024, aged 18–85 years, 
with complete clinical and laboratory records, and who had 
received standard cardiopulmonary resuscitation (CPR). Pa-
tients were excluded if more than 20 % of the key variables re-
quired for analysis were missing. The percentage of missing 
data was calculated relative to the predefined dataset that in-
cluded demographic characteristics, vital signs, major labo
ratory indicators (e.g., WBC, lactate, renal and liver function), 
and outcome variables. For patients with <10 % missing val-
ues, multiple imputation was applied, while those with >20 % 
missing in these core data elements were excluded. Other ex-
clusion criteria were the presence of severe terminal diseas-
es, expected survival less than 3 months, do-not-resuscitate 
(DNR) protocols, pregnancy, inability to be followed up, or 

traumatic cardiac arrest. These criteria helped ensure that 
the  included cohort had relatively complete and compara-
ble records, thereby improving data consistency and reliabi
lity for subsequent analysis. Ultimately, 748 cardiac arrest pa-
tients were enrolled, including 474 who achieved return of 
spontaneous circulation (ROSC) and 274 who did not.

Data collection
This was a single-center, retrospective clinical research 

study. Patient data were collected from institution electron-
ic medical records and registration archives. These data in-
cluded demographic characteristics (age, gender, body mass 
index), medical history (cardiovascular diseases, diabetes, 
hypertension), physiological parameters (systolic blood pres-
sure, heart rate, body temperature, oxygen saturation), labo-
ratory values (white blood cell count, lactate levels, liver and 
kidney function indicators), cardiac arrest-related clinical 
characteristics (occurrence location, initial rhythm, CPR du-
ration), and disease severity scores (APSIII, SOFA). The re-
search also focused on patient prognosis-related variables, 
such as ROSC, hospital stay, discharge status, and detailed re-
cordings of organ function, comorbidities, and neurological 
function. To ensure data quality, double-entry independent 
input and cross-verification were used, with random spot 
checks of 20 % of cases. For missing data under 10 %, multiple 
imputation methods were applied. The  data collection pro-
cess strictly adhered to medical research ethical guidelines. 
Patient privacy was protected by data anonymization, thus 
providing a solid ethical foundation for the research.
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Variable Total (n=748) ROSC (n=474) No-ROSC (n=274) Statistic p

Age (years) 65.88±16.44 63.73±16.21 69.59±16.20 t=–4.76 <0.001
WBC (×10⁹ / L) 11.32±6.14 9.99±4.96 13.61±7.22 t=–7.36 <0.001
Basophils Abs (×10⁹ / L) 0.03±0.02 0.03±0.02 0.03±0.02 t=3.22 0.001
Eosinophils Abs (×10⁹ / L) 0.18±0.18 0.21±0.21 0.14±0.10 t=5.89 <0.001
Lymphocytes Abs (×10⁹ / L) 1.44±0.59 1.41±0.52 1.50±0.68 t=–1.94 0.053
Monocytes Abs (×10⁹ / L) 0.73±0.27 0.76±0.27 0.67±0.25 t=4.25 <0.001
Neutrophils Abs (×10⁹ / L) 8.84±4.38 7.95±3.93 10.38±4.69 t=––7.24 <0.001
Hematocrit (%) 33.45±6.59 33.55±6.24 33.27±7.17 t=0.54 0.586
Hemoglobin (g / dL) 10.83±2.30 10.92±2.21 10.66±2.44 t=1.54 0.124
MCH (pg) 29.71±2.52 29.66±2.39 29.81±2.73 t=–0.80 0.426
MCHC (g / dL) 32.34±1.64 32.47±1.64 32.11±1.61 t=2.92 0.004
MCV (f L) 91.86±6.77 91.31±5.85 92.81±8.03 t=–2.70 0.007
Platelet (×10⁹ / L) 203.96±93.10 200.76±83.86 209.48±107.18 t=–1.16 0.248
RBC (×10¹² / L) 3.66±0.77 3.69±0.73 3.60±0.82 t=1.55 0.122
RDW (%) 15.28±2.05 15.04±1.96 15.70±2.13 t=–4.28 <0.001
SCr baseline (mg / dL) 1.28±1.23 1.32±1.38 1.20±0.90 t=1.29 0.198
Anion gap (mmol / L) 16.02±4.99 14.93±3.98 17.93±5.91 t=–7.48 <0.001
Bicarbonate (mmol / L) 23.04±4.99 24.45±4.42 20.60±4.99 t=10.60 <0.001
BUN (mg / dL) 32.97±22.70 30.40±20.72 37.43±25.18 t=–4.12 <0.001
Calcium (mg / dL) 8.62±0.95 8.69±0.80 8.51±1.17 t=2.26 0.024
Chloride (mmol / L) 102.90±6.20 102.05±5.74 104.37±6.69 t=–4.81 <0.001
Creatinine (mg / dL) 1.95±1.88 1.93±2.12 2.00±1.39 t=–0.50 0.619
Glucose (mg / dL) 154.03±70.20 141.81±61.73 175.18±78.59 t=–6.03 <0.001
Sodium (mmol / L) 138.94±4.79 138.65±4.57 139.44±5.13 t=–2.18 0.029
Potassium (mmol / L) 4.36±0.73 4.28±0.69 4.50±0.78 t=–3.89 <0.001
CRP (mg / L) 92.98±35.40 91.31±38.16 95.87±29.89 t=–1.81 0.071
ALT (U / L) 213.58±591.15 128.04±399.07 361.57±803.50 t=–4.50 <0.001
ALP (U / L) 113.44±79.69 110.94±80.09 117.78±78.95 t=–1.13 0.258
AST (U / L) 335.95±950.45 170.88±593.68 621.52±1316.05 t=–5.36 <0.001
Amylase (U / L) 115.57±67.45 103.41±48.84 136.61±87.26 t=–5.80 <0.001
Bilirubin Total (mg / dL) 0.90±0.93 0.79±0.64 1.11±1.26 t=–3.93 <0.001
Bilirubin Direct (mg / dL) 1.75±0.98 1.57±0.90 2.06±1.03 t=–6.53 <0.001
Bilirubin Indirect (mg / dL) 0.96±0.41 0.85±0.31 1.16±0.47 t=–9.82 <0.001
CK (U / L) 1353.44±7765.71 1295.07±9568.72 1454.41±2521.91 t=–0.27 0.787
CK-MB (U / L) 30.44±56.01 24.57±50.00 40.60±63.95 t=–3.57 <0.001
LDH (U / L) 679.85±1014.33 461.85±697.17 1056.99±1322.05 t=–6.92 <0.001
Lactate (mmol / L) 3.50±2.94 2.62±1.81 5.02±3.77 t=–9.89 <0.001
APS III (score) 64.05±27.92 54.49±22.11 80.59±29.21 t=–12.82 <0.001
Heart Rate (beats / min) 88.03±14.66 85.78±12.44 91.92±17.21 t=–5.18 <0.001
SBP (mmHg) 121.82±18.60 123.50±17.49 118.93±20.08 t=3.26 0.001
DBP (mmHg) 68.40±14.06 69.43±12.52 66.62±16.24 t=2.46 0.014
MBP (mmHg) 82.43±14.35 83.89±13.05 79.89±16.07 t=3.51 <0.001
Temperature (°C) 36.36±0.79 36.57±0.56 35.99±0.98 t=9.08 <0.001
SpO₂ (%) 95.56±5.17 96.70±3.47 93.58±6.80 t=7.10 <0.001
Urine output 24 h (ml) 236.13±227.58 259.45±251.96 195.79±170.72 t=3.72 <0.001
GCS (score) 14.31±1.69 14.50±1.10 13.98±2.35 t=3.42 <0.001
Hourly Patient Fluid Removal (ml / hr) 146.75±71.61 152.03±66.10 137.62±79.56 t=2.66 0.008
Ventilation Duration (hours) 36.13±40.22 31.11±29.49 44.81±52.92 t=–3.95 <0.001
Data are mean±standard deviation or number (percentage). t, t-test; χ², chi-square test; ROSC, return of spontaneous circulation.
Abbreviations: WBC = white blood cell count; RBC = red blood cell count; Abs = absolute count; MCH = mean corpuscular hemoglobin; 
MCHC = mean corpuscular hemoglobin concentration; MCV = mean corpuscular volume; RDW = red cell distribution width; SCr = serum 
creatinine; BUN = blood urea nitrogen; CRP = C-reactive protein; ALT = alanine aminotransferase; ALP = alkaline phosphatase; AST = 
aspartate aminotransferase; CK = creatine kinase; CK-MB = creatine kinase-MB isoenzyme; LDH = lactate dehydrogenase; APS III = Acute 
Physiology Score III; SBP = systolic blood pressure; DBP = diastolic blood pressure; MBP = mean blood pressure; SpO₂ = peripheral oxygen 
saturation; GCS = Glasgow Coma Scale.

Table 1 (Beginning). Clinical characteristics and outcome analysis of the patients
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Variable Total (n=748) ROSC (n=474) No-ROSC (n=274) Statistic p

Gender χ²=7.13 0.008
• Female 289 (38.6 %) 166 (35.0 %) 123 (44.9 %) — —
• Male 459 (61.4 %) 308 (65.0 %) 151 (55.1 %) — —

Insurance χ²=1.04 0.594
• Medicaid 42 (5.6 %) 24 (5.1 %) 18 (6.6 %) — —
• Medicare 382 (51.1 %) 240 (50.6 %) 142 (51.8 %) — —
• Other 324 (43.3 %) 210 (44.3 %) 114 (41.6 %) — —

Marital Status χ²=15.36 0.002
• Divorced 45 (6.0 %) 29 (6.1 %) 16 (5.8 %) — —
• Married 373 (49.9 %) 244 (51.5 %) 129 (47.1 %) — —
• Single 246 (32.9 %) 164 (34.6 %) 82 (29.9 %) — —
• Widowed 84 (11.2 %) 37 (7.8 %) 47 (17.1 %) — —

Myocardial Infarction (Yes) 227 (30.4 %) 150 (31.7 %) 77 (28.1 %) χ²=1.03 0.310
Congestive Heart Failure (Yes) 367 (49.1 %) 267 (56.3 %) 100 (36.5 %) χ²=27.33 <0.001
Peripheral Vascular Disease (Yes) 112 (15.0 %) 72 (15.2 %) 40 (14.6 %) χ²=0.05 0.827
Cerebrovascular Disease (Yes) 106 (14.2 %) 60 (12.7 %) 46 (16.8 %) χ²=2.44 0.119
Dementia (Yes) 30 (4.0 %) 16 (3.4 %) 14 (5.1 %) χ²=1.36 0.244
Chronic Pulmonary Disease (Yes) 187 (25.0 %) 119 (25.1 %) 68 (24.8 %) χ²=0.01 0.930
Rheumatic Disease (Yes) 31 (4.1 %) 18 (3.8 %) 13 (4.7 %) χ²=0.39 0.531
Peptic Ulcer Disease (Yes) 20 (2.7 %) 12 (2.5 %) 8 (2.9 %) χ²=0.10 0.751
Mild Liver Disease (Yes) 103 (13.8 %) 57 (12.0 %) 46 (16.8 %) χ²=3.32 0.069
Paraplegia (Yes) 33 (4.4 %) 19 (4.0 %) 14 (5.1 %) χ²=0.50 0.480
Renal Disease (Yes) 255 (34.1 %) 170 (35.9 %) 85 (31.0 %) χ²=1.81 0.178
Malignant Cancer (Yes) 57 (7.6 %) 31 (6.5 %) 26 (9.5 %) χ²=2.14 0.143
Severe Liver Disease (Yes) 23 (3.1 %) 7 (1.5 %) 16 (5.8 %) χ²=11.09 <0.001
Age (years) 65.88±16.44 63.73±16.21 69.59±16.20 t=–4.76 <0.001
WBC (×10⁹ / L) 11.32±6.14 9.99±4.96 13.61±7.22 t=–7.36 <0.001
Basophils Abs (×10⁹ / L) 0.03±0.02 0.03±0.02 0.03±0.02 t=3.22 0.001
Eosinophils Abs (×10⁹ / L) 0.18±0.18 0.21±0.21 0.14±0.10 t=5.89 <0.001
Lymphocytes Abs (×10⁹ / L) 1.44±0.59 1.41±0.52 1.50±0.68 t=–1.94 0.053
Monocytes Abs (×10⁹ / L) 0.73±0.27 0.76±0.27 0.67±0.25 t=4.25 <0.001
Neutrophils Abs (×10⁹ / L) 8.84±4.38 7.95±3.93 10.38±4.69 t=–7.24 <0.001
Hematocrit (%) 33.45±6.59 33.55±6.24 33.27±7.17 t=0.54 0.586
Hemoglobin (g / dL) 10.83±2.30 10.92±2.21 10.66±2.44 t=1.54 0.124
MCH (pg) 29.71±2.52 29.66±2.39 29.81±2.73 t=–0.80 0.426
MCHC (g / dL) 32.34±1.64 32.47±1.64 32.11±1.61 t=2.92 0.004
MCV (f L) 91.86±6.77 91.31±5.85 92.81±8.03 t=–2.70 0.007
Platelet (×10⁹ / L) 203.96±93.10 200.76±83.86 209.48±107.18 t=–1.16 0.248
RBC (×10¹² / L) 3.66±0.77 3.69±0.73 3.60±0.82 t=1.55 0.122
RDW (%) 15.28±2.05 15.04±1.96 15.70±2.13 t=–4.28 <0.001
SCr baseline (mg / dL) 1.28±1.23 1.32±1.38 1.20±0.90 t=1.29 0.198
Anion gap (mmol / L) 16.02±4.99 14.93±3.98 17.93±5.91 t=–7.48 <0.001
Bicarbonate (mmol / L) 23.04±4.99 24.45±4.42 20.60±4.99 t=10.60 <0.001
BUN (mg / dL) 32.97±22.70 30.40±20.72 37.43±25.18 t=–4.12 <0.001
Calcium (mg / dL) 8.62±0.95 8.69±0.80 8.51±1.17 t=2.26 0.024
Chloride (mmol / L) 102.90±6.20 102.05±5.74 104.37±6.69 t=–4.81 <0.001
Creatinine (mg / dL) 1.95±1.88 1.93±2.12 2.00±1.39 t=–0.50 0.619
Glucose (mg / dL) 154.03±70.20 141.81±61.73 175.18±78.59 t=–6.03 <0.001
Sodium (mmol / L) 138.94±4.79 138.65±4.57 139.44±5.13 t=–2.18 0.029
Data are mean±standard deviation or number (percentage). t, t-test; χ², chi-square test; ROSC, return of spontaneous circulation.
Abbreviations: WBC = white blood cell count; RBC = red blood cell count; Abs = absolute count; MCH = mean corpuscular hemoglobin; 
MCHC = mean corpuscular hemoglobin concentration; MCV = mean corpuscular volume; RDW = red cell distribution width; SCr = serum 
creatinine; BUN = blood urea nitrogen; CRP = C-reactive protein; ALT = alanine aminotransferase; ALP = alkaline phosphatase; AST = 
aspartate aminotransferase; CK = creatine kinase; CK-MB = creatine kinase-MB isoenzyme; LDH = lactate dehydrogenase; APS III = Acute 
Physiology Score III; SBP = systolic blood pressure; DBP = diastolic blood pressure; MBP = mean blood pressure; SpO₂ = peripheral oxygen 
saturation; GCS = Glasgow Coma Scale.

Table 1 (Continuation). Clinical characteristics and outcome analysis of the patients
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Machine learning methods
The  study utilized LASSO regression for variable selec-

tion, employing L1 regularization to screen the most critical 
predictive variables while balancing model complexity and 
predictive performance. Multiple machine learning algo-
rithms were introduced, including Gradient Boosting Deci-
sion Trees (GBDT) and Light Gradient Boosting Machine 
(LGBM), supplemented by comparative algorithms such 
as Random Forest, Support Vector Machine, and Logistic 
Regression. Model evaluation employed multidimensional 
methods, including calibration curves, decision curve anal-
ysis, and ROC curves, to comprehensively assess the model 
from perspectives of prediction probability accuracy, clinical 
utility, and classification performance. Data preprocessing 
rigorously handled missing value treatment, variable stan-
dardization, and encoding, with a 7:3 train-validation set 
split and hyperparameter optimization through grid and ran-
dom searches [10, 13–15]. To enhance model interpretabil-
ity, the research conducted feature importance ranking and 
SHAP value analysis, focusing not only on model predictive 
accuracy but also on revealing the mechanism of clinical fac-
tors influencing ROSC in cardiac arrest patients, thus pro-
viding more precise and interpretable data support for clin-
ical decision-making.

Statistical analysis
SPSS 26.0, R language, and SAS 9.4 software were used. 

The study employed comprehensive statistical methods to an-
alyze cardiac arrest patient data. Descriptive statistics were 
first used to characterize the distribution of continuous and 
categorical variables. Independent sample t-tests, Mann–
Whitney U tests, and chi-square tests compared clinical char-
acteristics between the  ROSC and non-ROSC groups. To 
evaluate inter-variable relationships, Pearson correlation co-
efficients were applied when both variables were continuous 
and normally distributed, whereas Spearman rank correlation 
coefficients were used for non-normally distributed or ordi-
nal variables. Multicollinearity testing was performed prior to 
regression modeling. Multifactor logistic regression and Cox 
proportional hazards models were then employed to assess 

independent risk factors affecting spontaneous circulation re-
covery. Statistical test results with an α=0.05 significance level 
and p<0.05 were considered statistically significant.

Results
Clinical characteristics and outcome analysis

The  analysis of 748  cardiac arrest patients revealed sig-
nificant differences between those who achieved return of 
spontaneous circulation (ROSC, n=474) and those who did 
not (non-ROSC, n=274). Patients in the ROSC group were 
younger (63.7±16.2 vs 69.6±16.2 years, p<0.001) and more 
frequently male (65.0 % vs 55.1 %, p=0.008). Hemodynam-
ic and respiratory parameters were more favorable among 
ROSC patients, who presented with higher systolic blood 
pressure (123.5±17.5  vs 118.9±20.1 mmHg, p=0.001), 
more stable body temperature (36.6±0.6 vs 36.0±1.0 °C, 
p<0.001), and higher oxygen saturation (96.7±3.5 % vs 
93.6±6.8 %, p<0.001). Inflammatory burden was lower in 
the  ROSC group, as reflected by reduced white blood cell 
count (9.99±4.96 vs 13.61±7.22×10⁹ / L, p<0.001) and neu-
trophil count (7.95±3.93 vs 10.38±4.69×10⁹ / L, p<0.001). 
Metabolic and organ function markers also showed clear dif-
ferences: lactate levels were significantly lower (2.62±1.81 vs 
5.02±3.77 mmol / L, p<0.001), bicarbonate was high-
er (24.5±4.4 vs 20.6±5.0 mmol / L, p<0.001), and re-
nal function was more favorable, with lower BUN values 
(30.4±20.7 vs 37.4±25.2 mg / dL, p<0.001). Hepatic injury 
was less severe in the ROSC group, evidenced by significant-
ly lower ALT, AST, and bilirubin levels (all p<0.01).

Clinically, ROSC patients required shorter ventilation 
duration (31.1±29.5 vs 44.8±52.9 hrs, p<0.001), maintained 
greater urine output (259.5±252.0 vs 195.8±170.7 ml / 24 h, 
p<0.001), and had better neurological status (GCS score 
14.5±1.1 vs 14.0±2.4, p=0.001). Importantly, their lower 
Acute Physiology Score III (APS III: 54.5±22.1 vs 80.6±29.2, 
p<0.001) indicated less severe overall illness and multi-or-
gan dysfunction [16]. Taken together, these findings demon-
strate that successful ROSC is associated with a constellation 
of favorable features  – including preserved hemodynam-
ic stability, lower systemic inflammation, balanced metabo-

Variable Total (n=748) ROSC (n=474) No-ROSC (n=274) Statistic p
Potassium (mmol / L) 4.36±0.73 4.28±0.69 4.50±0.78 t=–3.89 <0.001
CRP (mg / L) 92.98±35.40 91.31±38.16 95.87±29.89 t=–1.81 0.071
ALT (U / L) 213.58±591.15 128.04±399.07 361.57±803.50 t=–4.50 <0.001
Data are mean±standard deviation or number (percentage). t, t-test; χ², chi-square test; ROSC, return of spontaneous circulation.
Abbreviations: WBC = white blood cell count; RBC = red blood cell count; Abs = absolute count; MCH = mean corpuscular hemoglobin; 
MCHC = mean corpuscular hemoglobin concentration; MCV = mean corpuscular volume; RDW = red cell distribution width; SCr = serum 
creatinine; BUN = blood urea nitrogen; CRP = C-reactive protein; ALT = alanine aminotransferase; ALP = alkaline phosphatase; AST = 
aspartate aminotransferase; CK = creatine kinase; CK-MB = creatine kinase-MB isoenzyme; LDH = lactate dehydrogenase; APS III = Acute 
Physiology Score III; SBP = systolic blood pressure; DBP = diastolic blood pressure; MBP = mean blood pressure; SpO₂ = peripheral oxygen 
saturation; GCS = Glasgow Coma Scale.

Table 1 (Ending). Clinical characteristics and outcome analysis of the patients
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lism, and better organ function – underscoring the value of 
integrating routinely available clinical and laboratory indica-
tors into comprehensive risk stratification for cardiac arrest 
management (Table 1).

Variable selection for ROSC prediction 
using LASSO regression analysis

Our LASSO regression analysis reveals the  process of 
variable selection for predicting ROSC outcomes. Figure 1A 
illustrates the coefficient paths of variables as the penalty pa-
rameter (λ) changes, with coefficients being shrunk towards 
zero as λ increases. Two critical λ values are highlighted by 
vertical dotted lines: one corresponding to the minimum er-
ror (λ.min), and another representing the  most parsimoni-
ous model within one standard error (λ.1se). Figure 1B dis-
plays the binomial deviance curve with cross-validation error 
bars, where red dots indicate model deviance at different λ 
values. The  analysis identified optimal model selection at 
approximately e–4, striking a balance between model com-
plexity and predictive performance. This regularization ap-
proach effectively helps identify the most significant predic-
tors of ROSC while avoiding overfitting, thereby enhancing 
the model’s generalizability for clinical application.

LASSO regression helps selection of the most important 
variables for predicting ROSC through the penalty parame-
ter λ. As λ increases, the model shrinks the coefficients of less 
important variables close to zero. Through cross-validation, 
we determined the optimal model complexity to be approxi-
mately e–4. The final model retained several independent pre-
dictors, including age, white blood cell count (WBC), serum 
lactate, Acute Physiology Score III (APS III), systolic blood 
pressure (SBP), heart rate, peripheral oxygen saturation 

(SpO₂), and serum bicarbonate. These variables were consis-
tently associated with the likelihood of ROSC, highlighting 
their clinical relevance. This approach effectively identified 
key predictors while avoiding overfitting, thereby enhancing 
the reliability of the model in clinical applications.

Performance evaluation of machine learning 
models for predicting ROSC outcomes

Figure 2 summarizes the  comparative performance of 
nine predictive models for ROSC. In the validation cohort, 
calibration curves (Panel A) showed that GBDT and logis-
tic regression were closest to the  ideal diagonal, indicating 
better agreement between predicted probabilities and ob-
served outcomes. Decision curve analysis (Panel B) con-
firmed that these two models provided greater net clinical 
benefit than other algorithms across a range of threshold 
probabilities. The  ROC curves in the  training cohort (Pa
nel C) demonstrated excellent discrimination for GBDT 
(AUC 0.998±0.000) and AdaBoost (AUC 0.940±0.004), 
both outperforming logistic regression (AUC 0.839±0.002). 
Other models such as GNB (AUC 0.829) and KNN (AUC 
0.854) showed moderate performance, while MLP (AUC 
0.648) performed poorly. In the  validation cohort (Pa
nel D), logistic regression (AUC 0.864±0.011) and GBDT 
(AUC 0.805±0.017) maintained reasonable predictive abili-
ty, whereas other models, including AdaBoost (AUC 0.730), 
GNB (AUC 0.775), and SVM (AUC 0.733), showed re-
duced performance. KNN (AUC 0.655) and MLP (AUC 
0.648) demonstrated the lowest discrimination. Collectively, 
these results indicate that although GBDT achieved the best 
fit in the training set, logistic regression exhibited more sta-
ble and generalizable performance in the validation set. This 
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Figure 1. Variable selection for ROSC prediction using LASSO regression analysis
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suggests that traditional regression, when combined with ap-
propriate feature selection, may provide a balance between 
predictive accuracy and robustness, while ensemble meth-
ods such as GBDT offer superior discrimination in training 
but risk overfitting.

Discussion
This study systematically analyzed 748 cardiac arrest pa-

tients and identified several key predictors of return of spon-
taneous circulation (ROSC), including age, white blood cell 

count, serum lactate, Acute Physiology Score III (APS III), 
systolic blood pressure, heart rate, peripheral oxygen satura-
tion (SpO₂), and serum bicarbonate. While some of these 
indicators are consistent with previous clinical experience, 
our contribution lies in validating their prognostic value in 
a large, rigorously defined cohort and in demonstrating how 
advanced machine learning approaches can integrate these 
and other variables into robust predictive models. By eval-
uating multiple algorithms with calibration, decision curve, 
and ROC analyses, we found that gradient boosting models 

Panels A-D: The calibration curves show that models such as GBDT and LGBM have better calibration, with their predicted probabilities more 
closely aligned with the actual outcomes. The decision curves indicate that the GBDT and LGBM models have superior overall performance, 
providing higher net benefits. The ROC curves reflect the classification performance of the models on both the training and validation datasets, 
and GBDT and LGBM also demonstrate better results in these aspects.

А В

C D

Panels A-D: �e calibration curves show that models such as GBDT and LGBM have be�er calibration, with their predicted probabilities more closely aligned with the 
actual outcomes. �e decision curves indicate that the GBDT and LGBM models have superior overall performance, providing higher net bene�ts. �e ROC curves 
re�ect the classi�cation performance of the models on both the training and validation datasets, and GBDT and LGBM also demonstrate be�er results in these aspects.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Mean predicted value

Calibration curve (Validation)

Fr
ac

tio
n 

of
 p

os
iti

ve
s

Pepfectly Calibrated
logistic (0.143 SD(0.004))
AdaBoost (0.239 SD(0.004))
GBDT (0.168 SD(0.012))
GNB (0.214 SD(0.023))
CNB (0.237 SD(0.002))
MLP (0.265 SD(0.011))
SVM (0.201 SD(0.012))
KNN (0.222 SD(0.017))

0 20 40 60 80 100

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

�reshold Probability (%)

Validation Decison Curve

M
ea

n 
N

et
 B

en
e�

t

logistic
AdaBoost
GBDT
GNB
CNB
MLP
SVM
KNN
Treat None
Treat All

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1-Speci�city

ROC curve (Training)

Se
ns

iti
vi

ty

logistic (AUC=0.839 SD(0.002))
AdaBoost (AUG=0.940 SD(0.004))
GBDT (AUC=0.998 SD(0.000))
GNB (AUC=0.829 SD(0.008))
CNB (AUC=0.809 SD(0.005))
MLP (AUC=0.648 SD(0.001))
SVM (AUC=0.778 SD(0.013))
KNN (AUC=0854 SD(0.000))

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1-Speci�city

ROC curve (Validation)
Se

ns
iti

vi
ty

logistic (AUC=0.864 SD (0.011))
AdaBoost (AUC=0.730 SD(0.040))
GBDT (AUC=0.805 SD(0.017))
GNB (AUC =0.775 SD(0.031))
CNB (AUC =0.731 SD(0.010))
MLP (AUC=0.648 SD(0.012))
SVM (AUC=0.733 SD(0.031))
KNN (AUC=0.655 SD(0.022))

Figure 2. Performance evaluation of machine learning models for predicting ROSC outcomes
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(GBDT and LGBM) achieved superior calibration, discrimi-
nation, and clinical net benefit compared with traditional re-
gression. These findings confirm the prognostic importance 
of classical clinical indicators while underscoring the added 
value of machine learning in enhancing prediction accuracy 
and supporting personalized risk stratification, thereby offer-
ing practical guidance for improving outcomes in cardiac ar-
rest management.

The prognosis of cardiac arrest patients is influenced by 
multiple complex factors. This study systematically iden-
tified key predictive indicators across hemodynamics, me-
tabolism, inflammation, and organ function. Among them, 
the lactate / albumin ratio (LAR) functions as an integrated 
indicator that reflects both metabolic status and the adequa-
cy of tissue perfusion and organ function [17, 18]. In our co-
hort, lower LAR values were associated with higher ROSC 
rates, consistent with the notion that preserved metabolic re-
serve and perfusion capacity support tolerance to hypoxic – 
ischemic insults.

Hemodynamic indicators are well-recognized determi-
nants of cardiac arrest prognosis, and our findings further 
substantiate this in a large cohort. In particular, systolic blood 
pressure within the range of 120–130 mmHg was significant-
ly associated with higher ROSC rates, providing quantitative 
evidence that even modest deviations from this optimal win-
dow may reduce the  likelihood of successful resuscitation. 
Similarly, oxygen saturation values >95 % – a routinely moni-
tored parameter – were consistently identified as independent 
predictors of ROSC. Beyond confirming established physio-
logical principles, our analysis highlights that these common 
bedside measurements retain strong prognostic value when 
integrated into multivariable and machine learning models, 
underscoring their continued importance for real-time risk 
stratification and clinical decision-making [19–21]. Among 
inflammatory and metabolic indicators, the white blood cell 
count (WBC) provides critical information about the body’s 
stress and metabolic balance [22]. WBC within the normal 
range suggest that the  patient’s inflammatory response and 
acid-base balance are relatively stable, forming an important 
physiological basis for successful ROSC.

Albumin is more than just a marker of nutritional sta-
tus; it is a significant indicator of liver function and overall 
metabolic level. Higher albumin levels were significantly 
associated with better ROSC prognosis, potentially due to 
its unique advantages in regulating colloid osmotic pressure 
and resisting inflammation and oxidative stress. Renal func-
tion indicators, such as creatinine clearance, urea nitrogen, 
and electrolyte balance provide a comprehensive assessment 
of the patient’s overall physiological state [23–25].

Cardiac rhythm and resuscitation-related indicators 
cannot be overlooked. Patients who presented with initial 
shockable rhythms, such as ventricular fibrillation or pulse-

less ventricular tachycardia, had significantly higher ROSC 
rates compared to those with non-shockable rhythms. This 
finding underscores the  prognostic importance of the  first 
documented rhythm at the  time of cardiac arrest and high-
lights the critical role of early rhythm recognition and timely 
defibrillation in improving outcomes

[26, 27]. The time window from admission to CPR, CPR 
duration, and epinephrine administration strategies will di-
rectly impact patient survival probability. These indicators 
are interwoven, collectively forming a complex physiological 
landscape of cardiac arrest patient prognosis.

Notably, these predictive factors are not independent but 
part of a highly interconnected and mutually influential com-
plex system. By analyzing these indicators systematically and 
multi-dimensionally, we can more accurately assess patient 
prognosis and develop personalized treatment strategies. Fu-
ture research should further explore the  potential interac-
tion mechanisms of these indicators, establish more precise 
prediction models, and provide more targeted and precise 
treatment plans for cardiac arrest patients. This data-driven, 
individualized medical approach offers new hope and possi-
bilities for improving survival rates and prognosis quality for 
cardiac arrest patients.

The  study employed LASSO regression and machine 
learning models, particularly Gradient Boosting Deci-
sion Trees (GBDT) and Light Gradient Boosting Machine 
(LGBM), providing an innovative solution for clinical prog-
nosis prediction. Model evaluation results demonstrated 
that GBDT and LGBM exhibited excellent performance 
across calibration curves, decision curves, and ROC curves. 
These models not only accurately predict patient outcomes 
but also help clinicians deeply understand the  key clinical 
factors influencing ROSC, significantly enhancing model in-
terpretability and clinical utility.

Comparison with existing research further validated 
the  study’s results. Previous studies similarly emphasized 
the  impact of LAR, non-defibrillatable rhythms, and ad-
mission-to-CPR time on ROSC, while Zhao et al.’s research 
focused on CPR duration, epinephrine dosage, and ini-
tial rhythm. This multi-angle, multi-dimensional research 
perspective provides richer insights into understanding 
the prognosis mechanisms of cardiac arrest patients.

The research findings have significant clinical practice im-
plications. By precisely identifying ROSC’s key predictive 
factors, clinicians can more accurately assess patient progno-
sis and achieve precise resource allocation. Machine learning 
models, especially GBDT and LGBM, can provide real-time 
predictions and strong support for clinical decision-making. 
This data-driven approach aims to help identify patients 
more likely to achieve ROSC, optimize treatment strategies, 
and ultimately improve patient survival rates and prognosis 
quality.
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Conclusion

This study systematically analyzed 748 patients with car-
diac arrest and identified key predictors of return of sponta-
neous circulation (ROSC), including age, white blood cell 
count, serum lactate, Acute Physiology Score III (APS III), 
systolic blood pressure, heart rate, peripheral oxygen satura-
tion (SpO₂), and serum bicarbonate. These routinely avail-
able clinical and laboratory indicators were consistently asso-
ciated with ROSC, providing an evidence-based foundation 
for risk stratification. By integrating these predictors into 
machine learning models such as GBDT and LGBM, we 
achieved improved calibration, discrimination, and clinical 

net benefit compared with conventional regression methods. 
These findings confirm the prognostic importance of estab-
lished clinical factors in a large cohort while demonstrating 
the added value of advanced machine learning for individu-
alized risk assessment. Collectively, this work offers a practi-
cal and data-driven approach to guide clinical decision-mak-
ing and may contribute to optimizing treatment strategies 
and improving survival outcomes in cardiac arrest patients.
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