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Incremental Value of Radiomics Features 
of Epicardial Adipose Tissue for Detecting 
the Severity of COVID-19 Infection

Introduction Epicardial adipose tissue (EAT) is known for its pro-inflammatory properties and association with 
Coronavirus Disease 2019 (COVID-19) severity. However, existing detection methods for COVID-19 
severity assessment often lack consideration of organs and tissues other than the lungs, which limits 
the accuracy and reliability of these predictive models.

Material and methods The retrospective study included data from 515 COVID-19 patients (Cohort 1, n=415; Cohort 2, 
n=100) from two centers (Shanghai Public Health Center and Brazil Niteroi Hospital) between January 
2020 and July 2020. Firstly, a three-stage EAT segmentation method was proposed by combining 
object detection and segmentation networks. Lung and EAT radiomics features were then extracted, 
and feature selection was performed. Finally, a hybrid model, based on seven machine learning models, 
was built for detecting COVID-19 severity. The hybrid model’s performance and uncertainty were 
evaluated in both internal and external validation cohorts.

Results For EAT extraction, the Dice similarity coefficients (DSC) of the two centers were 0.972 (±0.011) and 
0.968 (±0.005), respectively. For severity detection, the area under the receiver operating characteristic 
curve (AUC), net reclassification improvement (NRI), and integrated discrimination improvement (IDI) 
of the hybrid model increased by 0.09 (p<0.001), 19.3 % (p<0.05), and 18.0 % (p<0.05) in the internal 
validation cohort, and by 0.06 (p<0.001), 18.0 % (p<0.05) and 18.0 % (p<0.05) in the external validation 
cohort, respectively. Uncertainty and radiomics features analysis confirmed the  interpretability of 
increased certainty in case prediction after inclusion of EAT features.

Conclusion This study proposed a novel three-stage EAT extraction method. We demonstrated that adding EAT radiomics 
features to a  COVID-19 severity detection model results in increased accuracy and reduced uncertainty. 
The value of these features was also confirmed through feature importance ranking and visualization.
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Introduction
The global health crisis sparked by the  COVID-19 

pandemic has underscored the importance of understanding 
the nuanced factors that influence the severity of the disease 
[1]. Initial investigations predominantly focused on 
pulmonary complications for severity assessment. However, 

recent attention has shifted towards exploring additional 
contributors, notably inflammation, and the pivotal role of 
epicardial adipose tissue (EAT) in disease progression [2].

Inflammation is a cornerstone in the trajectory of 
COVID-19, offering substantial insights into its severity as 
based on pulmonary findings [2]. EAT, located between 
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the myocardium and pericardium, is a significant source of 
pro-inflammatory mediators. This makes EAT an intriguing 
target for exploring the interplay between inflammation and 
disease severity [3]. The proximity of EAT to the coronary 
arteries and myocardium, coupled with its ability to secrete 
various anti-inflammatory and pro-inflammatory adipokines 
[4], links it closely with adverse cardiovascular events.

Studies have established a correlation between EAT 
volume and COVID-19 severity [5, 6], thus aiding in 
assessing the risk of disease progression. The evolving 
landscape of radiomics presents an opportunity to delve 
deeper into the intricate features of EAT, potentially 
uncovering novel insights into disease progression. However, 
traditional methods of EAT extraction are complex, 
laborious, and time-consuming, and these methods [7, 8] 
often lack consideration of EAT positional information.

Additionally, the reliability of predictive models in 
medical diagnostics is frequently questioned, necessitating 
robust methodologies for uncertainty quantification [9]. 
Integrating uncertainty into predictive models enhances 
interpretability and fosters trust in clinical decision-making.

This study hypothesized that EAT is significantly 
associated with the severity of COVID-19 infection. To 
address the shortcomings of existing EAT extraction 
methods, we proposed a novel, three-stage, automatic EAT 
extraction method. To investigate the incremental value 
of EAT features for the diagnosis of COVID-19 severity, 
we built a hybrid diagnostic model and evaluated its 
performance based on radiomics features and uncertainty 
analysis. This research has the potential to provide valuable 

insights into the role of EAT in COVID-19 severity and to 
enhance the overall understanding of the disease.

Material and methods
Study population

The retrospective study included patients treated at two 
medical centers between January and July, 2020 (Figure 1). 
There were 415 consecutive patients (371 mild and 44 severe 
cases) with confirmed COVID-19 at Shanghai Public 
Health Center (Cohort 1) [2] and 100 consecutive patients 
(50  mild and 50 severe cases) with confirmed COVID-19 
cases at Brazil Niteroi Hospital (Cohort 2). The population 
division for each stage is in the supplementary material.

This study was approved by the Ethics Committees of 
the  Shanghai Public Health Clinical Center and the Brazil 
Public Health Clinical Center.

Lung Segmentation
The lung segmentation was achieved according 

to  the  research method of Zhao et al. [10], and 
the  segmentation results of lung were confirmed by 
radiologists. Unachieved lung segmentation results due 
to imaging difference segmentation were defined as 
unsatisfactory results. To ensure the accuracy of feature 
extraction, unsatisfied results were re-annotated manually by 
LabelMe software for lung.

Automatic Extraction of EAT
The method for the automatic extraction of EAT is 

structured into three main modules, each serving a specific 

Central illustration. Incremental Value of Radiomics Features of Epicardial Adipose Tissue for Detecting the Severity of COVID-19 Infection
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function in the segmentation process. The  process is 
illustrated in Figure 2. Firstly, object detection is used as 
a  guiding module in the initial stage to obtain positional 
information, which contributes to improved accuracy 
in subsequent segmentation. Following this, the results 
from object detection are then leveraged to conduct 
binary segmentation of the heart, distinguishing between 
the myocardium and endocardium, as well as the background. 
This step is carried out within the segmentation network, 
ultimately producing the  contour of the heart. Finally, 

the third stage involves the implementation of thresholding 
and smoothing techniques within the heart contour to 
isolate and extract the EAT.

Object Detection
To address the time-consuming, manual screening of 

heart start and end frames of each patient, object detection 
is incorporated as a guide module to enhance the efficiency 
of heart segmentation. The YOLO-V5 network [11] is 
utilized for object detection, with the training samples 
consisting of images containing the heart. The input image 
size for the YOLO-V5 network is set to 512×512×1 px, 
and the  corresponding labels include the normalized 
coordinates of the heart centroid (horizontal and vertical) 
within the image, as well as the width and height of the heart 
region. By passing the image through this bootstrap module, 
the network can output information regarding the heart’s 
location. If the  image contains the heart region, it will be 
identified as such; otherwise, it will be classified as not 
containing the heart region. This step enables automatic 
screening of images to identify those that contain the heart 
region for each patient.

Heart Segmentation
To achieve more accurate determination of the  EAT 

range, a  deep learning network was employed to 
automatically segment the heart contour in each patient 
image, before proceeding with the extraction of EAT. 
The  heart contour segmentation model utilized in this 
study is based on the  well-established U-Net network 
[12]. The U-Net network is a two-dimensional model with 
an input image size of 512×512×1 px. Upon processing 
an input image, it produces an output in the form of 
a  probabilistic map that represents the heart contour. In 
this map, a value of 1 indicates the presence of the heart 
contour and its internal regions, while 0 represents 
the background. This step ensures the precise delineation 
of the heart structure, thereby facilitating the subsequent 
extraction of EAT.

Figure 1. Flowchart of patient inclusion and 
exclusion and flowchart of modeling

Figure 2. Flowchart of EAT extraction
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Threshold Extraction

As used in the generation of the reference, the threshold 
for adipose tissue has been defined as a Hounsfield Unit 
(HU) of –190 HU to –30 HU. EAT was obtained by 
threshold extraction and median filtering in the heart 
contour results obtained from the segmentation network.

Severity Detection
CT radiomics Features Extraction

In cohort 1 and cohort 2, each patient’s lung and EAT 
regions were formed into three-dimensional images, and 
120  radiomics features [13] of both lung and EAT were 
extracted, respectively.

Feature Selection
In the derivation cohort, univariate analysis and Pearson 

correlation analysis were used to identify predictors of 
COVID-19 severity classification from 120 lung and 
120  EAT radiomics features. This analysis process was 
performed according to Zhao et al. [10]. Univariate logistic 
regression analysis was used to select features with significant 
differences. Then Pearson correlation analysis between 
features was conducted and strong correlation features 
were excluded with the selection threshold combined with 
the final number of included features.

Classification Model Modeling
In the derivation cohort (n=290), a hybrid model based 

on seven basic machine learning models was built. The basic 
machine learning models included Logistic Regression (LR) 
[14], Support Vector Machine (SVM) [15], Random Forest 
(RF) [16], Adaptive Boosting (AdaBoost) [17], Extreme 
Gradient Boosting (XgBoost) [18], Light Gradient Boosting 
Machine (LGBM) [19], and Gradient Boosting Decision 
Tree (GBDT) [20]. The hybrid model utilized the mean 
value of the predictions of the basic models as its prediction 
result, and the standard deviation of the predictions of the 
basic models was used as the uncertainty quantization of the 
prediction result.

The performance improvement of the COVID-19 
severity classification model was subsequently validated 
using lung and EAT radiomics features in both an internal 
validation cohort (n=125) and an external validation 
cohort (n=100). The interpretability of the  model 
was analyzed based on the radiomics features and the 
uncertainty quantization.

The uncertainty of prediction results was quantified into 
six levels ranging from 0 to 0.1, 0.1 to 0.2, 0.2 to 0.3, 0.3 to 0.4, 
0.4 to 0.5, and 0.5 to 1. A lower uncertainty quantification 
value closer to 0 indicated a higher confidence in the model’s 
prediction, while a value closer to 1 represented higher 
uncertainty and less confidence in the model’s prediction. 

The uncertainty quantification results of the  hybrid model 
combining radiomic features of both lung and EAT were 
evaluated in terms of their quantification levels in the internal 
validation cohort and external validation cohort, respectively.

Results
Patient Characteristics

In the derivation cohort, 30 (10.34 %) patients were 
diagnosed with severe COVID-19. The  mean age of 
mild and severe cases was 40.0±15.4 and 59.0±14.9, 
respectively, and 48 % (n=260) and 53 % (n=30) were male, 
respectively. The baseline characteristics of the patients 
in the derivation cohort are displayed in Supplementary 
Table 1. There were no significant differences (p>0.05) in 
gender, white blood cell count, potassium, and lactic acid. 
In Cohort 1, patients with respiratory symptoms of fever 
and pneumonia on imaging were diagnosed as having mild 
infection. Severe COVID-19 infection was defined by any 
of the following: shortness of breath with respiratory rate 
(RR) ≥30 / min, pulse oxygen saturation (SpO2) ≤93 % at 
rest, arterial partial pressure of oxygen (PaO2) / O2 fraction 
of inspired oxygen (FiO2) ≤300 mm Hg (adjusted for 
altitude), or significant clinical and lung lesion progression 
(>50 % within 24–48 hrs) [21]. In Cohort 2, patients who 
only required treatment in the emergency department 
were diagnosed as mild infection, and patients admitted to 
the ICU and infirmary were diagnosed as severe infection.

EAT Extraction
The results, as presented in Table 1, demonstrate that 

the segmentation method employing YOLO-V5+U-Net 
outperforms existing methods significantly. The U-Net 
network predicted all images as background, with a resulting 

Table 1. Comparisons of DSC and HD determined 
by different methods as applied to the two cohort test sets

Method DSC HD (mm)

Cohort 1

U-Net 0.629±0.047 –

V-Net 0.921±0.019 14.446±3.143

Hoori et al. [7] 0.935±0.021 13.842±3.486

Commandeur et al. [8] 0.943±0.016 10.548±3.042

Yolo-V5 + U-Net 
(current method 0.972±0.011 7.538±2.112

Cohort 2

U-Net 0.653±0.032 –

V-Net 0.903±0.024 17.169±5.168

Hoori et al. [7] 0.925±0.022 14.846±3.744

Commandeur et al. [8] 0.937±0.018 12.325±4.894

Yolo-V5 + U-Net 
(current method 0.968±0.005 6.423±1.842

DSC, dice similarity coefficient; HD, Hausdorff distance.
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DSC of 0.629. This led to all prediction results being negative 
samples, making it impossible to calculate HD. Visual 
comparison between EAT segmentation results annotated 
by experts and those predicted by the model is illustrated in 
Figure 3.

Feature Selection and Diagnostic Model
120 radiomics features were extracted from lung and 

EAT, respectively. Feature selection was performed in 
the derivation cohort. 75 lung and 42 EAT radiomics features 
were significantly different in the severity classification. 
The order of feature selection was ranked from high to 
low according to the AUC score of the  univariate analysis. 
The top 20 features and their importance scores are shown 
in Figure 4. The full features are shown in Supplementary 
Figure 1. The features with strong correlations were 
eliminated by correlation analysis among features 
(the correlation coefficient threshold was 0.75 in this paper). 
Finally, the remaining 6 lung radiomics features and 4 EAT 
radiomics features were included to build the diagnostic 
model (Supplementary Table 2).

Model performance in the validation cohort
Table 2 and Figure 5 shows the model performance 

for mild and severe classification in the internal and 
external validation cohort. In the internal validation 
cohort compared with the hybrid model with only lung 
features, the hybrid model with lung and EAT radiomics 
features demonstrated improved predictive efficacy; its NRI 
increased by 19.3 % (p<0.001), and IDI increased by 18.0 % 
(p<0.001). In the  external validation cohort, the  hybrid 
model with radiomics features of both lung and EAT 
demonstrated improved predictive performance; its NRI 
increased by 18.0 % (p<0.001), and IDI increased by 18.0 % 
(p<0.001).

What is more noteworthy is that regardless of the model, 
the performance of the model combining lung and EAT 
radiomics features was superior to the model with only lung 
radiomics features, which further validated the incremental 
value of EAT for COVID-19 severity detection.

Furthermore, a comparison was made with existing 
methods for COVID-19 severity diagnosis, as shown in 
Table 3. These studies employed different metrics to establish 
diagnostic models, including clinical features, radiological 
features of the lungs, and CT quantitative scores. Our 
method achieved optimal performance by incorporating 
radiomics features of both the lung and EAT.

The blue area is EAT. The upper, middle, and lower rows  
correspond to the upper, middle, and lower parts of the heart.

Figure 3. Comparisons of the results of EAT extraction 
based on expert segmentation (left column), automatic 
heart segmentation by Yolo-V5+U-Net method (middle 
column, DSC=0.972), and automatic heart segmentation 
by V-Net method (right column, DSC=0.921) in Cohort 1

The left side of the bar shows the name of each feature,  
and the right side of the bar shows the feature importance  
score of the corresponding feature.

Figure 4.  Top 20 feature importance scores

Table 2. Model fitting and calibration in the derivation cohort 
(n = 290) and the predictive performance of the internal 
validation cohort (n=125) and the external validation 
cohort (n=90) for the mild and severe classification

Cohort Features SN SP AUC ACC

Internal 
Validation

Lung 0.786 0.910 0.867 0.896

Lung+EAT 0.857 0.928 0.957 0.920

External 
Validation

Lung 0.742 0.847 0.851 0.810
Lung+EAT 0.806 0.915 0.911 0.880

ACC, accuracy; AUC, area under the receiver operating  
characteristic curve; SN, sensitivity; SP, specificity.
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Discussion

This study evaluated a fully automated EAT extraction 
method and the value of EAT radiomics features for 
severity stratification in COVID-19 patients. Main 
findings: 1) a  three-stage method is proposed to improve 
the accuracy of EAT extraction, 2) the EAT radiomics 
features combined with lung have incremental value in 
detecting the severity of COVID-19 infection, and 3) 
the addition of EAT radiomics features provides improved 
interpretability and more confident predictions of results 
based on the hybrid model.

COVID-19 Severity Detection
In the study of the artificial intelligence detection severity 

of COVID-19 infection, Zhang et al. [24] used machine 
learning to classify patients’ blood indicators for mild and 
severe cases of COVID-19. The naïve Bayes model was 
the  best with an AUC of 0.90. Li et al. [25] had an AUC 
of 0.918 for mild and severe classification of CT visual 
quantitative score of patients. However, acquiring clinical 
indicators takes time, and the increase in diagnosis time may 
lead to delaying or missing the best treatment. At the same 
time, these methods lack interpretable analysis, and the 

Figure 5.  AUC plots for Hybrid models with lung and EAT radiomics features in internal and external validation cohort
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model cannot express whether it is confident about the 
predicted results and whether it can play the role of auxiliary 
diagnosis.

In addition, diagnostic methods that rely on imaging 
features only focusing on the lung region lack comprehensive 
judgment. COVID-19, especially in severely ill patients, may 
lead to complications in other parts of the patient’s body. 
The heart has been confirmed to be one of the leading organs 
for such complications in previous studies [1]. Therefore, 
the detection of cardiac effects of COVID-19 should also be 
used as a factor for severity stratification. This would provide 
increased possibilities for more accurate stratification of 
COVID-19. As in previous studies [5, 6], EAT was found 
to be related to the severity of COVID-19 in terms of 

severity stratification. In this study, the incremental value of 
radiomics features of EAT integrated with lung for detecting 
COVID-19 severity was found and demonstrated in 
internal and external validation cohorts. Other mainstream 
classification models had also verified the incremental value 
of EAT for the classification of mild and severe. In addition, 
our analysis included more radiomics features of EAT, and 
we found other meaningful features which were not found in 
previous studies.

Interpretability Analysis
Based on Radiomics Features

The feature selection process identified ZoneEntropy and 
Skewness as essential features for characterizing EAT. These 
features reflect the uncertainty or randomness in the  size 
and the gray distribution of the measurement area and 
the  asymmetry of the value distribution. The adipose tissue 
attenuation value in EAT has a dynamic range [–190, –30], 
and these features highlight the instability of  the  adipose 
tissue attenuation value in the EAT region of the image. 
Figure 6 compares the EAT attenuation index between 
mild and severe COVID-19 patients, and it shows that this 
index was more unstable and closer to –30 HU in severe 
patients. This observation provides a more intuitive reflection 
of  the  association between EAT and COVID-19 severity. 
Previous studies [26] have shown that adipose tissue can 
influence inflammation, and this study hypothesized that 
COVID-19 affects EAT in severely ill COVID-19 patients, 
leading to increased adipose tissue activity. These findings 
explain the uncertainty in gray distribution and the asymmetry 
of value distribution in the EAT radiomics features.

Figure 6.  EAT attenuation heatmaps for COVID-19 patients of different severity.  
The green contour represents the outline of the heartand external validation cohort

Table 3. Model performance comparison with  
state-of-the-art Covid-19 severity diagnosis methods

Method Features Number  
of patients AUC ACC

Liang  
et al. [22] Clinical 1590  

(131 severe) 0.88 –

Zhu et al. [2] Clinical+ Lung 
radiomics

427  
(40 severe) 0.94 0.93

Zhao  
et al. [23] Clinical 172  

(60 severe) – 0.91

Zhang  
et al. [24] Clinical 422  

(102 severe) 0.90 –

Li et al. [25] CT visual 
quantitative

78  
(8 severe) 0.92 –

Current 
method

Lung + EAT 
radiomics

415  
(44 severe) 0.96 0.92

ACC, accuracy; AUC, area under  
the receiver operating characteristic curve.
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Uncertainty Quantization
Figure 7 illustrates the uncertainty quantification 

of results in the two validation cohorts. Compared to 
the hybrid model using lung radiomics features, the hybrid 
model incorporating both lung and EAT radiomics features 
exhibited a concentration of uncertainty in the ranges of 
0–0.1 and 0.1–0.2, with higher accuracy within this range. 
This indicates that incorporating EAT radiomics features 
into the model enhances the confidence level and improves 
the accuracy of predicting the severity of the disease. This may 
be attributed to the inclusion of EAT radiomic features that 
likely capture additional characteristics related to the disease 
progression or to the underlying physiological factors that 
influence the  severity of the  condition. Additionally, it is 
noteworthy that the number of patients with uncertainty 
quantification between 0.5 and 1 was lower in the hybrid 
model that used both lung and EAT radiomics features as 
compared to the model using only lung radiomics features. 
Uncertainty values exceeding 0.5 indicate that the  hybrid 
model cannot provide more stable and confident predictions, 
thus necessitating secondary decision-making by physicians. 
This also means that more secondary decision-making 
interventions by physicians were required for cases with high 
uncertainty values. Therefore, incorporating EAT radiomic 
features not only enhanced the efficiency of clinical workflow, 
but it also suggested the potential for targeted interventions 
and personalized treatment strategies based on the model’s 

predictions and with additional insights from EAT radiomic 
features. A discussion of the EAT segmentation is included 
in the supplementary material.

Conclusions
In this study, we proposed a novel, three-stage EAT 

extraction method that surpasses existing methods in 
accuracy and efficiency. By utilizing a machine learning 
model integrated with uncertainty quantification, we 
have demonstrated the incremental value of EAT 
radiomics features in assessing the severity of COVID-19 
infection. Specifically, adding EAT radiomics features to 
the COVID-19 severity detection model results in increased 
accuracy and reduced uncertainty. The value of these features 
is also confirmed through feature importance ranking and 
visualization.
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