

Burhan Aslan¹, Mehmet Özbek², Adem Aktan³, Bedrettin Boyraz⁴, Erhan Tenekecioğlu⁵

- ¹ Health Science University, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
- ² Dicle University, Diyarbakır, Turkey
- ³ Mardin State Hospital, Mardin, Turkey
- ⁴ Tatvan State Hospital, Bitlis, Turkey
- ⁵ Bursa Training and research Hospital, Bursa, Turkey

FACTORS ASSOCIATED WITH ALL-CAUSE MORTALITY IN PATIENTS WITH CORONARY ARTERY CHRONIC TOTAL OCCLUSIONS UNDERGOING REVASCULARIZATION (PERCUTANEOUS CORONARY INTERVENTION OR SURGERY) OR MEDICAL TREATMENT

Aim Chronic total occlusion of a coronary artery (CTO) is a predictor of early and late cardiovascular mortality and poor cardiovascular outcomes in patients with coronary artery disease. The purpose of this study was to identify predictors of all-cause mortality in CTO patients that underwent invasive treatment.

Material and methods Patients between 2012 and 2018 with CTO in at least one vessel, as demonstrated by coronary angiography, were included retrospectively in the study. The patients were divided into two groups, an

intervention group (percutaneous and surgical revascularization) and a medical group.

Results A total of 543 patients were studied, 152 females (28%) and 391 males (72%). The median follow-up

period was 49 (26–72) mos. A total of 186 (34.2%) patients in the medical group and 357 (65.8%) patients in the invasive therapy group were followed. The 5-yr death rate was observed in 50 (26.9%) patients in the medical group and 53 (14.8%) patients in the intervention group, and it was found to be statistically higher in the medical group (p=0.001). In multivariable analysis, heart failure (odds ratio (OR): 1.92, 95% CI: 1.18-3.14; p=0.01), higher glucose levels (OR: 1.05, 95% CI: 1,02-1.08; p=0.04), lower albumin levels (OR: 0.49, 95% CI: 0.32-0.72; p=0.001), SYNTAX score (OR: 1.03, 95% CI: 1.01-1.05; p=0.001), and CTO (\geq 2 occluded artery) (OR: 0.42, 95% CI: 0.22-0.72; p=0.01)

were independent factors for all-cause mortality.

Conclusion In comparison to the revascularized group, there was an increase in mortality among CTO patients

treated medically. Heart failure, SYNTAX score, albumin, glucose, and CTO (≥2 occluded arteries)

were independent risk factors for all-cause mortality.

Keywords CTO; coronary artery disease; mortality; predictors

For citations Burhan Aslan, Mehmet Özbek, Adem Aktan, Bedrettin Boyraz, Erhan Tenekecioğlu. Factors associated

with all-cause mortality in patients with coronary artery chronic total occlusions undergoing revascularization (percutaneous coronary intervention or surgery) or medical treatment. Kardiologiia. 2022;62(3):49–55. [Russian: Бурхан Аслан, Мехмет Озбек, Адем Актан, Бедреттин Бойраз, Эрхан Тенекечиоглу. Факторы, связанные со смертностью от всех причин у пациентов с хронической тотальной окклюзией коронарных артерий, подвергающихся реваскуляризации (чрескожное вмешательство или коронарное шунтирование) или медикаментозному лечению. Кардиология.

2022;62(3):49-55]

Corresponding author Burhan Aslan. E-mail:burhanaslndr@gmail.com

Introduction

Despite recent advances in medical treatment and in percutaneous coronary intervention (PCI) or coronary artery bypass graft surgery (CABG), coronary artery disease (CAD) remains the leading cause of morbidity and mortality worldwide. Total coronary artery occlusion (CTO) is a complex coronary lesion. It is defined as an atherosclerotic lesion with a Thrombolysis in Myocardial Infarction (TIMI) grade of 0 and that remains completely occluded for at least 3 mos [1].

CTO can be detected incidentally in patients with myocardial infarction or as a result of coronary angiography

(CAG). CTO is present in 8–15% of patients with ST-segment elevation myocardial infarction (STEMI) and in 10–30% of patients undergoing CAG for unstable angina or for non-STEMI [2]. Despite technological advances, the majority of CTO patients are still treated medically, with only 10–15% being revascularized by PCI [3, 4]. CTO treatment improves the quality of life, increases left ventricular (LV) ejection fraction, reduces angina attacks, reduces the need for CABG, and improves tolerance to future myocardial infarction [5–7].

The presence of CTO in STEMI patients is a significant predictor of both early and late cardiovascular mortality

and morbidity [8]. The presence of CTO is closely related to cardiogenic shock, recurrent myocardial infarction, and ischemic stroke as compared to multi-vessel disease and without CTO [8]. According to these findings, the presence of CTO in a non-infarct-related artery is associated with a poor prognosis. It is important to determine the factors that affect the prognosis during the follow-up period and for treatment optimization. Thus, we aimed to determine all-cause mortality predictors in patients with CTO who underwent invasive treatment.

Material and methods

This retrospective and observational study included patients between 2012 and 2018 with CTO evident in at least one vessel after CAG. Only patients who underwent invasive treatment or medical therapy after CAG were included. The demographic characteristics and medical histories of the patients were obtained from the electronic database of the local institution. Patients with a CTO vessel diameter less than 2 mm, those who were unable to be followed up, and those who had unsuccessful interventions were excluded from the study. The study enrolled a total of 543 patients. Laboratory data were obtained from blood samples taken during hospitalization. The ethics committee of our hospital approved the study.

CAG was performed using the Judkins technique via the femoral artery. PCI or CABG was performed in cases where 10% ischemia was identified in the area supplied by an artery by non-invasive tests or in cases of resistant angina pectoris despite medical therapy. A successful PCI intervention was defined as ≤30% residual stenosis and at least grade 2 TIMI flow. A left internal mammary artery graft was used in all CABGs. Patients who did not require invasive therapy or refused an interventional procedure were treated medically. Follow-up data were obtained from the hospital database and from interviews with patients or their families, directly or by phone. The primary endpoint was death dues to all causes.

Statistics

The data were analyzed with SPSS (Statistical Package for Social Science for Windows), version 24. Histograms and the Shapiro-Wilks test were used to verify normal distributions of data. Continuous variables are presented as mean±standard deviation (normally distributed data) or as median and interquartile range (IQR, 25–75%) (non-normally distributed data). Categorical variables are expressed as percentages. A chi-square test was used to compare categorical variables between groups. For normally distributed data, the Mann–Whitney U test was used to analyze differences between the main groups. The Kaplan–Meier procedure was used for survival analysis of the medical

Table 1. Demographic and laboratory data of the medical and intervention groups

Variables	Medical group, n=186	Intervention group, n=357	p value
Age, yrs	65.82±11.73	61.50±10.47	<0.001
Male	142 (75.1)	249 (69.7)	0.10
Death (in 5 yrs)	50 (26.9)	53 (14.8)	0.001
Hypertension	80 (42.3)	114 (31.9)	0.01
Diabetes mellitus	52 (27.5)	111 (31.1)	0.22
Hyperlipidemia	13 (6.9)	22 (6.2)	0.43
Smoking	54 (28.6)	96 (26.9)	0.37
Renal failure	10 (5.3)	21 (5.9)	0.47
Heart failure	21 (11.1)	32 (9.0)	0.25
Atrial fibrillation	3 (1.6)	3 (0.8)	0.34
Stroke	6 (3.2)	9 (2.5)	0.42
MI	65 (34.4)	116 (32.5)	0.36
CIN	16 (8.5)	27 (7.6)	0.41
Ejection fraction, %	50 (40-60)	50 (40-60)	0.34
WBC, 10 ³ /ul	8.7 (7.2–10.7)	8.9 (7.3–10.9)	0.61
Hemoglobin, gr/dl	13.4 (12.1–14.8)	13.9 (12.6–15)	0.08
GFR, ml/min	88,5 (72-110)	88 (70-100)	0.92
Glucose, mg/dl	113 (94-149)	117 (95-172)	0.24
Albumin, g/dl	3.5 (3.2–3.8)	3.7 (3.4–3.9)	0.01
Total Cholesterol, mg/dl	170 (145-201)	177 (147-213)	0.21
Triglyceride, mg/dl	132 (90-184)	161 (109-226)	<0.001
LDL, mg/dl	102 (81-126)	99 (75-133)	0.62
HDL, mg/dl	36 (31.7–43)	38 (32-46)	0.03

Data are number (percentage), mean±SD, or median (IQR, 25–75%). CIN, contrast-induced nephropathy; GFR, glomerular filtration rate; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MI, myocardial infarction; WBC, white blood count.

and intervention groups. Multivariate logistic regression analyses were performed to determine the predictors of total mortality. P values <0.05 were considered statistically significant.

Results

A total of 543 patients were enrolled in the study, $152 \, \mathrm{females} \, (28\%) \, \mathrm{and} \, 391 \, \mathrm{males} \, (72\%)$. The median follow-up period was 49 (26-72) mos. There were 186 (34.2%) patients in the medical group and 357 (65.8%) patients in the invasive therapy group. The median age of the medical group was significantly higher than the other group (p<0.001). There was no significant difference between the follow-up periods for both groups. The demographic and laboratory data of the groups are shown in Table 1.

The 5-yr mortality rate was 50 (26.9%) for the medical group and 53 (14.8%) for the intervention group (p=0.001). The intervention group had a significantly higher rate of CTO lesions in the left anterior descending coronary artery (LAD, p=0.03).

The CTO lesion length and vessel diameter were higher in the intervention group than in the medical group (p=0.001,

Table 2. Angiographic findings in the medical and intervention groups

Variables	Medical group, n=186	Intervention group, n=357	p value
LAD CTO	66 (34.9)	155 (43.4)	0.03
CX CTO	36 (19)	81 (22.7)	0.19
RCA CTO	105 (55.6)	168 (47.1)	0.03
CTO length> 20mm	89 (47.3)	211 (59.1)	0.01
Blunt stump	68 (36)	151 (42.3)	0.09
Tortuous CTO	73 (38.6)	195 (54.6)	<0.001
Calcification	33 (17.5)	57 (16)	0.36
Long CTO	87 (46.3)	215 (60.2)	0.001
Number of CTO	1: 170 (91.3) 2: 16 (8.7) 3: 0	314 (87.9) 40 (11.2) 3 (0.9)	0.40
Rentrop collateral classification	0: 21 (11) 1: 72 (38.1) 2: 65 (34.4) 3: 31 (16.4)	27 (7.6) 163 (45.7) 107 (30) 60 (16.7)	0.24
Number of coronary stenoses	1: 54 (28.6) 2: 86 (45.4) 3: 49 (25.9)	103 (28.9) 147 (41.1) 107 (30)	0.53
Diameter of CTO, mm	2.5 (2.2-2.9)	2.85(2.4-3.2)	<0.001
SYNTAX score	29 (23-38)	28.5(22,2-35,5)	0.18

Data are number (percentage) or median (IQR, 25-75%).

CTO; chronic total occlusion; CX, circumflex coronary artery;

LAD, left anterior descending coronary artery; RCA, right coronary artery.

Table 3. Demographic features of PCI and CABG groups

Variable	PCI group, n=278	CABG group, n=79	p value
Gender (Male)	197 (70.9)	52 (65.8)	0.38
Age, yrs	61.3±10.6	62.1±10.1	0.55
EF, %	49.0±11.4	51.7±9.7	0.09
Death in five years	37 (13.3)	16 (20.3)	0.12
HT	85 (30.6)	29 (36.7)	0.30
DM	80 (28.8)	31 (39.2)	0.07
HL	17 (6.1)	5 (6.3)	0.94
Smoking	75 (27.0)	21 (26.6)	0.94
CRF	17 (6.1)	4 (5.1)	0.72
Heart failure	27 (9.7)	5 (6.3)	0.35
AF	2 (0.7)	1 (1.3)	0.63
CVD	3 (1.1)	6 (7.6)	0.001
MI	106 (38.1)	10 (12.7)	<0.001
PAD	8 (2.9)	4 (5.1)	0.34
CIN	21 (7.6)	6 (7.6)	0.99

Data are number (percentage) or mean±SD. AF, atrial fibrillation; CABG, coronary artery bypass graft; CIN, contrast-induced nephropathy; CRF, chronic renal failure; CVD, cerebrovascular disease; DM, diabetes mellitus; EF, ejection fraction; HL, hyperlipidemia; MI, myocardial infarction; PAD, peripheral artery disease; PCI, percutaneous coronary intervention.

Table 4. Laboratory data and angiographic features of PCI and CABG groups

Variable	PCI group, n=278	CABG group, n=79	p value
Hemoglobin, gr/dl	13.8±1.9	13.3±1.8	0.02
GFR, ml/min	83.2±25.1	86.3±25.6	0.43
Albumin, g/dl	3.6±0.42	3.3±0.4	< 0.001
Total cholesterol, mg/dl	177.9±49.2	197.5±48.5	0.001
LDL, mg/dl	101±40.1	123.6±42.5	0.001
SYNTAX score	27.8±9.8	30.5±9.2	0.01
LAD lesions	202 (72.7)	79 (100)	< 0.001
LAD CTO	117 (42.1)	38 (48.1)	0.34
CX CTO	55 (19.8)	26 (32.9)	0.01
RCA CTO	127 (45.7)	41 (51.9)	0.32
CTO length> 20mm	170 (61.2)	41 (51.9)	0.14
Blunt stump	128 (46)	23 (29.1)	0.01
Tortuose CTO	167 (60.1)	28 (35.4)	< 0.001
Calcification	52 (18.7)	5 (6.3)	0.01
Number of the vessel with significant stenosis	1: 98 (35.3) 2: 115 (41.4) 3: 65 (23.3)	5 (6.3) 32 (40.5) 42 (53.2)	<0.001 0.15 0.001
Number of CTO	1: 257 (92.4) 2: 21 (7.6) 3: 0	57 (72.2) 19 (24.1) 3 (3.7)	<0.001 <0.001 0.01
Rentrop collateral classification	0: 23 (8.3) 1: 128 (46) 2: 78 (28.1) 3: 49 (17.6)	4 (5.1) 35 (44.3) 29 (36.7) 11 (13.9)	0.40

Data are number (percentage) or mean±SD. CABG, coronary artery bypass graft; CTO, chronic total occlusion; CX, circumflex coronary artery; GFR, glomerular filtration rate; LAD, left anterior descending coronary artery; LDL, low-density lipoprotein; PCI, percutaneous coronary intervention; RCA, right coronary artery.

Table 5. Results of univariate and multivariate analyses to determine predictors of all-cause mortality

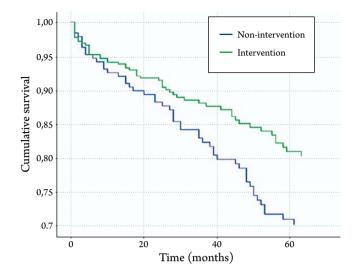
Variable	Univariate analysis	p value	Multivariate analysis	p value
Heart failure	3.27 (2.07–5.18)	< 0.001	1.92 (1.18-3.14)	0.01
Albumin	0.33 (0.23-0.48)	< 0.001	0.49 (0.32-0.72)	0.001
Glucose	1.23 (1.07–1.40)	< 0.001	1.05 (1.02-1.08)	0.04
SYNTAX score	1.06 (1.04–1.07)	<0.001	1.03 (1.01–1.05)	0.001
LAD CTO	1.47 (0.97–2.21)	0.06	-	-
CTO (≥2)	0.48 (0.28-0.84)	0.001	0.42 (0.22-0.72)	0.01
CIN	2.60 (1.56-4.32)	0.001	-	-
GFR	0.98 (0.97-0.99)	< 0.001	-	-
Creatinine	1.23 (1.07–1.40)	0.001	-	-
DM	1.56 (1.05-2.32)	0.02	-	-
HT	1,55 (1.05–2.29)	0.02	-	_
CRF	2.49 (1.39–4.45)	0.006	-	-
Hematocrit	0.94 (0.91–0.97)	0.001	-	-

Data are odds ratio (95% confidence interval).

CABG, coronary artery bypass graft; CIN, contrast-induced nephropathy; CTO; chronic total coronary occlusion (≥2 occluded arteries); CRF, chronic renal failure; DM, diabetes mellitus; HL, hyperlipidemia; LAD, left anterior descending coronary artery; PCI, percutaneous coronary intervention.

p<0.001, respectively). There was no statistical difference between groups in terms of SYNTAX score (p<0.18). The CAG findings of the groups are shown in Table 2. The overall survival in the 5-yr in the medical group was lower than the intervention group (p=0.02). The Kaplan–Meier curves of the groups are shown in Figure 1.

The intervention group was divided into two groups, PCI and CABG, and the two groups were compared. Demographic features of those groups are presented in Table 3, and laboratory and angiographic findings are presented in Table 4. There was no significant difference between the groups in terms of 5-yr mortality rates. The CABG group had a higher rate of ischemic stroke (p=0.001). Total cholesterol and LDL cholesterol were significantly higher in the CABG group (p<0.001, p=0.001, respectively). SYNTAX score was higher in the CABG group than the PCI group (p=0.01). The CABG group has a higher rate of multi-vessel disease, as well as a higher rate of CTO in two and three vessels (p<0.001, p<0.001, p<0.001, respectively).


In the multivariate regression analysis, heart failure (odds ratio (OR): 1.92, 95% confidence interval (CI): 1.18–3.14; p=0.01), higher glucose levels (OR: 1.05, 95% CI: 1.02–1.08; p=0.04), lower albumin levels (OR: 0.49, 95% CI: 0.32–0.72; p=0.001), SYNTAX score (OR: 1.03, 95% CI: 1.01–1.05; p=0.001), and CTO (\geq 2 occluded artery) (OR: 0.42, 95% CI: 0.22–0.72; p=0.01) were found as independent factors for all-cause mortality. Results of the multivariate regression analysis is presented in Table 5.

Discussion

Our main finding was that heart failure, low albumin, high glucose, SYNTAX score, and CTO (≥2 occluded arteries) were independent predictors of all-cause mortality. The 5-yr, all-cause mortality was higher in patients with CTO who were treated medically compared to patients treated with PCI or CABG. There was no statistically significant difference in mortality rates between those who underwent PCI and those who underwent CABG.

CTO interventions have become recently a new area of interest. Patients with LV dysfunction, large ischemic areas (>10%) in noninvasive tests, and symptoms resistant to medical therapy are all candidates for CTO interventions, and the effect of these interventions on the prognosis can only be determined in the presence of such conditions [9–11]. Patients with CTO typically present with stable angina pectoris. In the treatment of patients with chronic coronary syndrome, optimal medical therapy is essential [12]. The long-term effects of CTO intervention on CAD prognosis are not fully understood. While no mortality difference was found between medical and intervention groups in randomized studies [13–16], successful PCI has been shown to have a long-term mortality benefit in

Figure 1. Kaplan–Meier curves displaying survival analysis of medical and intervention groups

Medical treatment: 81.7–95% CI: 75.9–86.3 Interventional treatment: 89.9–95% CI: 86.2–93.6, p=0.02

observational studies [17–20]. Similarly, in a Japanese study, PCI was applied to patients with CTO, and groups with and without successful reflow were followed for 3 yrs. No difference was detected between these groups for all-cause and cardiac deaths [21].

Godino et al. observed that patients with CTO lesions who were not revascularized had a 500% increase in cardiac mortality compared to those who were revascularized [20]. This benefit was attributed to the preservation or recovery of LV systolic function, as well as a decrease in the incidence of ventricular arrhythmias. In other studies Kirschbaum et al. [22, 23], found improved LV function for 3 yrs after PCI, but an increased frequency of ventricular arrhythmias was observed in patients with CTO. Reduced LV systolic function, renal failure, and diabetes mellitus were identified as effective predictors of mortality in medical group, and mortality rates were comparable between revascularized and medical groups [20]. Similar to that study, in the present study, all-cause mortality was higher in patients with medical treatment. Furthermore, high glucose, a sign of diabetes mellitus or impaired glucose tolerance, and heart failure, which may indicate LV systolic dysfunction, have a negative effect on 5-yr all-cause mortality.

The mortality benefit of any therapy may vary depending on the size of the area fed by the CTO. An increase in the jeopardized myocardial area is associated with poor LV systolic function. This may result in an increase in poor outcomes. In our study, we found that having more than 2 CTOs was an independent predictor of mortality. A previous study found that successful intervention for LAD and right coronary artery (RCA) CTO lesions was associated with

Cypposages Pericipaquionenii isosegi /// 100613. Fyraninposovice нименование розувастати» е фенофират. Леворственнай предатити предостати и фенофират. В потраждения разраждения и делигити и делигити

отпускают по рецепту. *Полная информация представлена в инструкции по медицинскому применению. CMI от 19.03.2021 на основании ИМП ЛП-006619 от 04.12.2020.

1. Инструкция по медицинскому применении препарата Супрозафею то 41.12.2020. 2. https://gis.rosminacdara.ru/. 3. Rohit D and Shankar J. Comparative Study of Atorvastatin and Rosuvastatin in Combination with Fenofibrate in mixed Hyperlipidemia. Int J Pharmacol and Clin Sci. 2016;5(1):25-31. 4. Agouridis AP, Kostapanos MS, Tsimihodimos V, Kostara C, Mikhailldis DP, Bairaktari ET, Tselepis AD, Elisaf MS. Effect of rosuvastatin monotherapy or in combination with fenofibrate or u-3 fatty acids on lipoprotein subfraction pro le in patients with mixed dyslipidaemia and metabolic syndrome. Int J Clin Pract. 2012 Sep;66(9):843-53. doi: 10.1111/j.1742-1241.2012.02972.x. PMID: 22897461. 5. Kim NH, Han KH, Choi J, Lee J, Kim SG. Use of fenofibrate on cardiovascular outcomes in statin users with metabolic syndrome: propensity matchors that do not study. BMID: 2019 Sep 27;366:51125. doi: 10.1136/bmij.15215.

PMID: 31562117; PMCID: PMC6763755. 6. Ridker P et al. Rosuvastatin to Prevent Vascular Events in Men and Women with Elevated C-Reactive ProteinN Engl J Med 2008; 359: 2195-2207.

RUS2185008 (v1.0)

ООО «Эбботт Лэбораториз»

125171, Москва, Ленинградское шоссе, дом 16 а, строение 1, бизнес-центр «Метрополис» Тел.: (495) 258-4280, факс: (495) 258-4281, www.ru.abbott

lower mortality [24]. We observed that the interventional group had significantly more CTO lesions in the LAD and RCA than the medical group. This finding may help explain the lower mortality in the interventional group.

A high SYNTAX score in CAD patients indicates increased mortality and morbidity [25], and a high SYNTAX score in CTO patients has been linked to 30-day cardiac events and procedural failure [26]. Furthermore, a high SYNTAX score is an indicator of diffuse vascular disease, which may result in poor cardiac outcomes due to extensive myocardial ischemia. In the current study, we found that a high SYNTAX score is an independent predictor of mortality. Low albumin, which is the main component of the prognostic nutritional index, has been associated with in-hospital and long-term mortality in patients with CAD [27]. The nutritional status shows the general condition and integrity of the immune system. In our study, we also found that low albumin was associated with an increase in 5-yr all-cause mortality.

Limitations of the study

This is an observational and retrospective study, and so there are some limitations. Total mortality was reported and cardiac deaths were not specified in our study. Therefore, deaths due to other diseases may have led to these results. Another limitation is the difference in the number of patients in study groups. The study population is relatively small, and so large-scale randomized controlled studies are needed.

Conclusion

Compared to the revascularized group, we found an increase in mortality of CTO patients treated medically. Heart failure, SYNTAX score, albumin, glucose, and CTO (≥2 occluded artery) were found to be independent predictors of all-cause mortality. More effort should be made to identify patients who would likely benefit from CTO treatment. Patients with certain risk factors should be followed more closely, and their medical treatment should be optimized.

Funding

The research received no financial support.

No conflict of interest is reported.

The article was received on 24.11.2021

REFERENCES

- Sianos G, Barlis P, Di Mario C, Papafaklis M, Büttner J, Galassi A et al. European experience with the retrograde approach for the recanalisation of coronary artery chronic total occlusions. A report on behalf of the EuroCTO club. EuroIntervention. 2008;4(1):84–92. DOI: 10.4244/EIJV4I1A15
- Claessen BE, Dangas GD, Weisz G, Witzenbichler B, Guagliumi G, Mockel M et al. Prognostic impact of a chronic total occlusion in a non-infarct-related artery in patients with ST-segment elevation myocardial infarction: 3-year results from the HORIZONS-AMI trial. European Heart Journal. 2012;33(6):768–75. DOI: 10.1093/eurheartj/ehr471
- 3. Jeroudi OM, Alomar ME, Michael TT, Sabbagh AE, Patel VG, Mogabgab O et al. Prevalence and management of coronary chronic total occlusions in a tertiary veterans affairs hospital. Catheterization and Cardiovascular Interventions. 2014;84(4):637–43. DOI: 10.1002/ccd.25264
- 4. Kahn JK. Angiographic suitability for catheter revascularization of total coronary occlusions in patients from a community hospital setting. American Heart Journal. 1993;126(3 Pt 1):561–4. DOI: 10.1016/0002-8703(93)90404-W
- Olivari Z, Rubartelli P, Piscione F, Ettori F, Fontanelli A, Salemme L et al. Immediate results and one-year clinical outcome after percutaneous coronary interventions in chronic total occlusions: data from a multicenter, prospective, observational study (TOAST-GISE). Journal of the American College of Cardiology. 2003;41(10):1672–8. DOI: 10.1016/S0735-1097(03)00312-7
- Cheng ASH, Selvanayagam JB, Jerosch-Herold M, van Gaal WJ, Karamitsos TD, Neubauer S et al. Percutaneous treatment of chronic total coronary occlusions improves regional hyperemic myocardial blood flow and contractility: insights from quantitative cardiovascular magnetic resonance imaging. JACC: Cardiovascular Interventions. 2008;1(1):44–53. DOI: 10.1016/j.jcin.2007.11.003
- 7. Chung C-M, Nakamura S, Tanaka K, Tanigawa J, Kitano K, Akiyama T et al. Effect of recanalization of chronic total occlusions on global and regional left ventricular function in patients with or without pre-

- vious myocardial infarction. Catheterization and Cardiovascular Interventions. 2003;60(3):368–74. DOI: 10.1002/ccd.10641
- Allahwala UK, Jolly SS, Džavík V, Cairns JA, Kedev S, Balasubramanian K et al. The Presence of a CTO in a Non–Infarct-Related Artery During a STEMI Treated with Contemporary Primary PCI Is Associated With Increased Rates of Early and Late Cardiovascular Morbidity and Mortality: The CTO-TOTAL Substudy. JACC: Cardiovascular Interventions. 2018;11(7):709–11. DOI: 10.1016/j.jcin.2017.12.005
- Colmenarez HJ, Escaned J, Fernández C, Lobo L, Cano S, del Angel JG et al. Efficacy and safety of drug-eluting stents in chronic total coronary occlusion recanalization: a systematic review and meta-analysis. Journal of the American College of Cardiology. 2010;55(17):1854–66. DOI: 10.1016/j.jacc.2009.12.038
- Stone GW, Kandzari DE, Mehran R, Colombo A, Schwartz RS, Bailey S et al. Percutaneous Recanalization of Chronically Occluded Coronary Arteries: A Consensus Document: Part I. Circulation. 2005;112(15):2364–72. DOI: 10.1161/CIRCULA-TIONAHA.104.481283
- Stone GW, Reifart NJ, Moussa I, Hoye A, Cox DA, Colombo A et al. Percutaneous Recanalization of Chronically Occluded Coronary Arteries: A Consensus Document: Part II. Circulation. 2005;112(16):2530–7. DOI: 10.1161/CIRCULATIONAHA.105.583716
- 12. Al-Lamee R, Thompson D, Dehbi H-M, Sen S, Tang K, Davies J et al. Percutaneous coronary intervention in stable angina (OR-BITA): a double-blind, randomised controlled trial. The Lancet. 2018;391(10115):31–40. DOI: 10.1016/S0140-6736(17)32714-9
- Jolicœur EM, Sketch MJ, Wojdyla DM, Javaheri SP, Nosib S, Lokhnygina Y et al. Percutaneous coronary interventions and cardiovascular outcomes for patients with chronic total occlusions. Catheterization and Cardiovascular Interventions. 2012;79(4):603–12. DOI: 10.1002/ccd.23269
- Lee S-W, Lee PH, Ahn J-M, Park D-W, Yun S-C, Han S et al. Randomized Trial Evaluating Percutaneous Coronary Intervention for the Treatment of Chronic Total Occlusion: The DECISION-CTO

- Trial. Circulation. 2019;139(14):1674–83. DOI: 10.1161/CIRCU-LATIONAHA.118.031313
- 15. Henriques JPS, Hoebers LP, Råmunddal T, Laanmets P, Eriksen E, Bax M et al. Percutaneous Intervention for Concurrent Chronic Total Occlusions in Patients With STEMI: The EXPLORE Trial. Journal of the American College of Cardiology. 2016;68(15):1622–32. DOI: 10.1016/j.jacc.2016.07.744
- 16. Werner GS, Martin-Yuste V, Hildick-Smith D, Boudou N, Sianos G, Gelev V et al. A randomized multicentre trial to compare revascularization with optimal medical therapy for the treatment of chronic total coronary occlusions. European Heart Journal. 2018;39(26):2484–93. DOI: 10.1093/eurheartj/ehy220
- 17. Khan MF, Wendel CS, Thai HM, Movahed MR. Effects of percutaneous revascularization of chronic total occlusions on clinical outcomes: A meta-analysis comparing successful versus failed percutaneous intervention for chronic total occlusion. Catheterization and Cardiovascular Interventions. 2013;82(1):95–107. DOI: 10.1002/ccd.24863
- Niccoli G, De Felice F, Belloni F, Fiorilli R, Cosentino N, Fracassi F et al. Late (3 Years) Follow-Up of Successful Versus Unsuccessful Revascularization in Chronic Total Coronary Occlusions Treated by Drug Eluting Stent. The American Journal of Cardiology. 2012;110(7):948–53. DOI: 10.1016/j.amjcard.2012.05.025
- Claessen BEPM, van der Schaaf RJ, Verouden NJ, Stegenga NK, Engstrom AE, Sjauw KD et al. Evaluation of the Effect of a Concurrent Chronic Total Occlusion on Long-Term Mortality and Left Ventricular Function in Patients After Primary Percutaneous Coronary Intervention. JACC: Cardiovascular Interventions. 2009;2(11):1128–34. DOI: 10.1016/j.jcin.2009.08.024
- Godino C, Bassanelli G, Economou FI, Takagi K, Ancona M, Galaverna S et al. Predictors of cardiac death in patients with coronary chronic total occlusion not revascularized by PCI. International Journal of Cardiology. 2013;168(2):1402–9. DOI: 10.1016/j.ijcard.2012.12.044
- 21. Yamamoto E, Natsuaki M, Morimoto T, Furukawa Y, Nakagawa Y, Ono K et al. Long-Term Outcomes After Percutaneous Cor-

- onary Intervention for Chronic Total Occlusion (from the CRE-DO-Kyoto Registry Cohort-2). The American Journal of Cardiology. 2013;112(6):767–74. DOI: 10.1016/j.amjcard.2013.05.004
- Kirschbaum SW, Baks T, van den Ent M, Sianos G, Krestin GP, Serruys PW et al. Evaluation of Left Ventricular Function Three Years After Percutaneous Recanalization of Chronic Total Coronary Occlusions. The American Journal of Cardiology. 2008;101(2):179–85.
 DOI: 10.1016/j.amjcard.2007.07.060
- Nombela-Franco L, Mitroi CD, Fernández-Lozano I, García-Touchard A, Toquero J, Castro-Urda V et al. Ventricular Arrhythmias Among Implantable Cardioverter-Defibrillator Recipients for Primary Prevention: Impact of Chronic Total Coronary Occlusion (VACTO Primary Study). Circulation: Arrhythmia and Electrophysiology. 2012;5(1):147–54. DOI: 10.1161/CIRCEP.111.968008
- Claessen BE, Dangas GD, Godino C, Henriques JPS, Leon MB, Park S-J et al. Impact of target vessel on long-term survival after percutaneous coronary intervention for chronic total occlusions. Catheterization and Cardiovascular Interventions. 2013;82(1):76–82. DOI: 10.1002/ccd.24579
- 25. Farooq V, Serruys PW, Bourantas CV, Zhang Y, Muramatsu T, Feldman T et al. Quantification of Incomplete Revascularization and its Association with Five-Year Mortality in the Synergy Between Percutaneous Coronary Intervention With Taxus and Cardiac Surgery (SYNTAX) Trial Validation of the Residual SYNTAX Score. Circulation. 2013;128(2):141–51. DOI: 10.1161/CIRCULATIONAHA.113.001803
- Nagashima Y, Iijima R, Nakamura M, Sugi K. Utility of the SYNTAX score in predicting outcomes after coronary intervention for chronic total occlusion. Herz. 2015;40(8):1090–6. DOI: 10.1007/s00059-015-4323-2
- 27. Keskin M, Hayıroğlu Mİ, Keskin T, Kaya A, Tatlısu MA, Altay S et al. A novel and useful predictive indicator of prognosis in ST-segment elevation myocardial infarction, the prognostic nutritional index. Nutrition, Metabolism and Cardiovascular Diseases. 2017;27(5):438–46. DOI: 10.1016/j.numecd.2017.01.005