

Ferhat Eyyupkoca¹, Ajar Kocak¹, Onur Yildirim¹,
Mehmet Sait Altintas², Karabekir Ercan³, Cengiz Sabanoglu⁴, Sercan Okutucu⁵

¹ Dr. Nafiz Korez Sincan State Hospital, Department of Cardiology, Ankara, Turkey

² Yedikule Chest Diseases and Thoracic Surgery Training and Research Hospital, Department of Cardiology, Istanbul, Turkey

³ Ankara Bilkent City Hospital, Department of Radiology, Ankara, Turkey

⁴ Kirikkale High Specialization Hospital, Department of Cardiology, Kirikkale, Turkey

⁵ Memorial Ankara Hospital, Department of Cardiology, Ankara, Turkey

IS THERE A RELATIONSHIP BETWEEN HEART RATE RECOVERY AND BLOOD PRESSURE IN WHITE COAT HYPERTENSION?

<i>Aim</i>	Increasing evidence suggests that autonomic dysfunction may be involved in the etiology of white coat hypertension (WCH). The aim of this study was to evaluate cardiac autonomic function by using heart rate recovery (HRR) indices in patients with WCH classified according to their circadian rhythm type of blood pressure (BP).
<i>Material and methods</i>	This cross-sectional study included 120 participants over the age of 18 yrs, including 50 patients diagnosed with WCH and 70 healthy controls with normal in- and out-of-office BP and without any known disease. Circadian rhythm types, i.e., dippers and non-dippers, were identified using ambulatory BP monitoring. The HRR indices were calculated by subtracting the 1st-minute (HRR1), 2 nd -minute (HRR2), and 3 rd -minute (HRR3) heart rates from the maximal heart rate recorded during stress testing.
<i>Results</i>	The lesser decline in nighttime BP (6.4 ± 2.14 and 13.3 ± 2.2 mmHg, respectively; $p < 0.001$) and the smaller mean HRR1 (25.5 ± 3.0 and 30.3 ± 3.1 beats/min, respectively; $p < 0.001$) were evident in WCH non-dippers compared to WCH dippers. Linear regression analysis showed that HRR1 ($\beta \pm \text{SE} = 0.43 \pm 0.11$; $p < 0.001$) and diastolic BP at maximum exercise ($\beta \pm \text{SE} = 0.14 \pm 0.07$; $p = 0.040$) are independent risk factors for the blunted decline in nighttime BP.
<i>Conclusion</i>	Delayed recovery of heart rate after an exercise stress test is associated with non-dipper type of circadian rhythm of BP. This was more pronounced in WCH patients, and these patients are at risk of autonomic dysfunction.
<i>Keywords</i>	Circadian rhythm; dipper; heart rate recovery; non-dipper; white coat syndrome
<i>For citations</i>	Ferhat Eyyupkoca, Ajar Kocak, Onur Yildirim, Mehmet Sait Altintas, Karabekir Ercan, Cengiz Sabanoglu et al. Is there a relationship between heart rate recovery and blood pressure in white coat hypertension? Kardiologiya. 2022;62(4):55–63. [Russian: Ферхат Эйюпкоджа, Ажар Коджак, Онур Йылдырым, Мехмет Сайт Алтынташ, Карабекир Эрджан, Ченгиз Сабаноглу и др. Есть ли связь между восстановлением частоты сердечных сокращений и артериальным давлением при гипертонии белого халата? Кардиология. 2022;62(4):55–63]
<i>Corresponding author</i>	Ferhat Eyyupkoca. E-mail: eyupkocaferhat@gmail.com

Introduction

White coat hypertension (WCH), defined by Pickering in 1988 [1, 2], and also known as white coat syndrome, is an increasingly important type of hypertension. It has an average prevalence of 9–22%, and is about 25–46% among hypertensive individuals [3, 4]. Patients with WCH have elevated in-office blood pressure (BP), despite normal out-of-office BP [5]. Although its etiopathogenesis remains a mystery, WCH is often thought to be related with female gender, increasing age, and non-smoking status [6, 7]. Since WCH occurs during BP measurements in the clinic, it should be considered that the balance and interaction between parasympathetic and sympathetic activation may have an important role in its etiopathogenesis. In fact, there is increasing evidence to suggest that autonomic dysfunction may be involved in the etiology of WCH [8, 9].

Heart rate recovery (HRR) is a simple, noninvasive measurement that reflects autonomic dysfunction [10]. HRR

is described as the reduction in heart rate after exercise, and it is a potential marker for important clinical outcomes, [11–13]. It is thought that delayed HRR may be associated with mortality in cardiovascular disease [14, 15]. The relationships between HRR and both primary BP and circadian BP patterns in primary hypertension have been investigated in several studies [16–18]. However, there have been no studies of the relationship between WCH and HRR. Since there are several studies in the literature highlighting a relationship between WCH and autonomic nervous system dysfunction, we hypothesized that there might be an interaction between BP and HRR in WCH. Thus, we investigated cardiac autonomic function as reflected in HRR indices of normotensive and WCH patients, according to their circadian rhythm types of BP.

Material and methods

This cross-sectional study was conducted between January 12, 2020 and January 02, 2021. The study was designed

in conformity with the Declaration of Helsinki, as updated in 2013, and with good clinical practices. The study was approved by the local ethics committee and written consent was obtained from the participants.

The study included 120 patients over 18 yrs, who had applied to our outpatient clinic for a check-up, and who had no previous diagnosis of hypertension. Of these patients, 50 were diagnosed with WCH, based on their in- and out-of-office BP measurements, and 70 were considered normotensive, based on their normal in- and out-of-office BP values. Patients were excluded if they had any known chronic obstructive pulmonary disease; cardiovascular and cerebrovascular diseases; congenital or acquired valvular disease; hypertrophic, dilated, or restrictive cardiomyopathy; congestive heart failure; cardiac conduction disorders or arrhythmias; diabetes mellitus; renal failure; known drug use; thyroid disease; malignancies; smoking or alcohol abuse habits.

The age, gender and body mass index (BMI) of the patients were recorded. The BMI was computed as body weight (kg) divided by height squared (m^2).

In-office blood pressure measurements

Before the BP measurements were taken, all of the participants were instructed not to eat, smoke, drink tea or coffee, or consume caffeine in any form. BP was measured after 5 min of rest; three readings were taken at 5 min intervals on two different days.

Out-office blood pressure measurements

The participants were given verbal and written instructions about how to measure their BP at home. The measurement device was given to the participants, and they were told to measure their BP at home, four times a day, on three different days. The participants were instructed not to eat, smoke, drink tea or coffee, or consume caffeine in any form before measuring their BP, and to rest for 5 min of before making the measurements [19].

Monitoring ambulatory blood pressure

Ambulatory BP monitoring (ABPM) was evaluated using a Tracker NIBP2 monitoring device (Del Mar Reynolds Medical Ltd., Hertford, UK). Data from the first hour of monitoring was excluded from the analysis. The BP readings were auto-recorded at 15-min intervals over 24 hr. Records were agreed if >85% of the raw data were valid. The absolute decrease and the percentage decrease of the systolic BP (SBP) for the nighttime to daytime period were calculated. Bedtime was defined according to a patient's diary, which documented the time they went to bed and the time they got up. The nighttime BP measurements for the time in bed were determined from the ABPM data. Daytime BP was defined as the mean BP during the remainder of the 24 hr period. Mean BP was computed as the diastolic BP (DBP) plus one-third of

the pulse pressure. The percentage decline in the nighttime BP was computed as follows: (mean daytime BP – mean nighttime BP/mean daytime BP) × 100. Non-dippers were defined as having a decline in mean nighttime BP of <10%.

Based on the 2018 European Society of Hypertension (ESH) and European Society of Cardiology (ESC) guidelines, a diagnosis of WCH was established if the in-hospital measurements showed a mean SBP and DBP of ≥ 140 and ≥ 90 mmHg, respectively, and the daytime ABPM showed a mean SBP and DBP of < 135 and < 85 mmHg, respectively. Patients with a mean BP of $< 140/90$ mmHg in the outpatient clinic measurements and $< 135/85$ mmHg in the daytime ABPM were considered normotensive [20].

Treadmill exercise testing

Treadmill exercise testing was performed on all participants, aiming to reach an age-adjusted maximal heart rate using the modified Bruce protocol. 85% of the predicted heart rate achieved by all participants. A standard 12-lead ECG with Mason–Likar modification was recorded at 25 mm/sec. All participants had at least 3 min recovery with no cooldown after reaching peak workload. Exercise capacity was evaluated as the metabolic equivalents (METs) at peak exercise. The SBP and DBP at maximum exercise were recorded and defined as SBP_{me} and DBP_{me}, respectively. The HRR indices, HRR₁, HRR₂, and HRR₃, were computed by subtracting the heart rates at the 1st, 2nd, and 3rd min of the recovery period from the maximal heart rate during exercise.

Transthoracic echocardiographic examination

Transthoracic echocardiographic examination was evaluated with a System Five cardiac ultrasound scanner (GE Vingmed Ultrasound, Horten, Norway) with 2.5–3.5 MHz transducers. Echocardiographic data were used to compute left ventricular ejection fractions.

Statistical analysis

Statistical analyses were conducted using IBM SPSS 20.0 for Windows (IBM Corp., Armonk, NY, USA). Numerical variables were found to have normal distribution using the Kolmogorov–Smirnov test, and these values are presented as the mean \pm standard deviation (SD). Categorical variables are presented as value (percentage). Student t-tests were used to compare intergroup numerical variables. Chi-square and Fisher's exact chi-square tests were to compare categorical variables. Relationships between numerical variables were examined by Pearson correlation analysis. Multivariate linear regression analysis was used to determine the effects of various variables, including age, gender, BMI, basal HR, left ventricular ejection fraction, MHR, duration of exercise test, peak exercise capacity, maximal heart rate, SBP_{me}, DBP_{me}, and the HRR₁, HRR₂, and HRR₃, on the percent decline in

Table 1. Baseline characteristics of dippers and non-dippers in the normotensive and WCH groups

Variable	Normotensive		p	WCH		p
	Non-dipper, n=35	Dipper, n=35		Non-dipper, n=25	Dipper, n=25	
Age, yrs	52.9±11.3	51.4±13.4	0.614	52.7±16.4	52.0±10.9	0.834
Gender						
Male	22 (62.9)	24 (68.5)	0.802	16 (64.0)	15 (60.0)	0.990
Female	13 (37.1)	11 (31.5)		9 (36.0)	10 (40.0)	
BMI, kg/m ²	29.4±4.0	30.3±5.1	0.414	28.3±3.5	29.2±4.8	0.373
SBP, mmHg	129.3±3.6	128.5±3.2	0.329	156.9±6.3	154.6±7.0	0.153
DBP, mmHg	79.5±4.9	80.4±4.2	0.426	98.9±6.1	99.4±5.0	0.708
Basal HR, bpm	73.3±9.6	71.2±7.4	0.309	78.3±8.8	77.4±10.0	0.691
Left ventricular EF, %	64.3±3.8	65.2±3.4	0.300	65.0±3.6	64.1±4.0	0.332
LVDD, cm	4.6±0.6	4.5±0.5	0.350	4.7±0.5	4.6±0.4	0.393
LVSD, cm	2.9±0.3	3.0±0.4	0.241	3.0±0.5	3.1±0.4	0.439
IVST, cm	1.1±0.3	1.0±0.2	0.197	1.1±0.4	1.1±0.3	0.738
IVRT, ms	89.3±11.6	88.6±10.8	0.795	92.5±15.8	91.6±14.9	0.837
LA diameter, cm	3.5±0.4	3.4±0.3	0.241	3.6±0.3	3.5±0.4	0.322
E/A ratio	1.1±0.3	1.0±0.3	0.168	1.2±0.3	1.1±0.3	0.164
LVMI, g/m ²	88.4±14.5	87.5±13.7	0.791	90.3±16.3	89.2±15.1	0.806
Systolic 24-hour ABPM, mmHg	116.3±3.4	108.5±3.6	<0.001*	118.1±3.8	106.1±3.5	<0.001*
Diastolic 24-hour ABPM, mmHg	70.4±3.2	65.2±3.4	<0.001*	72.4±4.5	66.8±3.8	<0.001*
Systolic day ABPM, mmHg	120.1±4.2	115.5±3.6	<0.001*	122.4±4.5	113.4±4.8	<0.001*
Diastolic day ABPM, mmHg	74.7±4.4	70.6±4.3	<0.001*	76.2±4.8	70.2±4.2	<0.001*
Systolic night ABPM, mmHg	112.0±2.9	100.0±4.0	<0.001*	117.4±3.3	103.7±4.2	<0.001*
Diastolic night ABPM, mmHg	65.5±2.3	60.2±3.2	<0.001*	66.5±4.2	60.8±3.4	<0.001*
Decline in nighttime BP, %	6.7±2.3	13.7±2.1	<0.001*	6.4±2.4	13.3±2.2	<0.001*

Data are mean±SD or value (percentage). * significantly different from respective non-dipper value.

ABPM, ambulatory blood pressure monitoring; BMI, body mass index; BP, blood pressure; bpm, beats per minute;

DBP, diastolic blood pressure; EF, ejection fraction; E/A, peak velocity of early diastolic flow/peak velocity of late diastolic flow;

HR, heart rate; IVRT, isovolumetric relaxation time; IVST: interventricular septal thickness; LVEDD, left ventricular end-diastolic diameter; LVESD, left ventricular end-systolic diameter; LVMI, left ventricular mass index; SBP, systolic blood pressure.

the nighttime BP of the WCH patients. $p<0.05$ was considered statistically significant.

Results

The mean age (50.3±14.5 yrs vs. 52.0±12.4 yrs, $p=0.498$), male gender distribution (38% vs. 34.3%, $p=0.090$), and mean BMI (28.8±4.2 vs. 29.8±4.6 kg/m², $p=0.182$) were similar between the WCH and normotensive groups. In-office SBP (154.7±6.9 vs. 129.4±3.2 mmHg; $p<0.001$) and DBP (101.2±5.5 vs. 85.3±4.5 mmHg, $p<0.001$) were higher in the WCH group compared to the normotensive group. Echocardiographic parameters were similar between the WCH and normotensive groups.

Demographic and clinical characteristics for the non-dipper and dipper BP patterns in the WCH and normotensive groups are shown in Table 1. There were higher mean 24-hr, daytime, and nighttime BPs and a lower mean decrease in nighttime BP (6.7±2.3% vs. 13.7±2.1%, $p<0.001$) in the normotensive, non-dipper group compared to the normotensive, dipper group. There were higher mean 24-hr, daytime, and nighttime BPs and a smaller mean decrease in nighttime BP (6.4±2.14

vs. 13.3±2.2%, $p<0.001$) in the WCH non-dipper group compared to the WCH dipper group.

The mean HRR1 values were lower in the normotensive, non-dipper groups compared to the normotensive, dipper group (26.8±3.6 vs. 29.0±3.4 beats per min (bpm), $p=0.011$). The mean HRR1 values were lower in the WCH non-dipper group compared to WCH dipper group (25.5±3.0 vs. 30.3±3.1 bpm, $p<0.001$) (Figure 1). There was no significant difference between the groups in terms of the other parameters of the treadmill exercise test (Table 2).

In the WCH group, there was a positive correlation between the HRR1 values and the decline in the nighttime BP ($r=0.523$; $p<0.001$) (Table 3) (Figure 2). HRR1 ($\beta\pm\text{SE}=0.43\pm0.11$; $p<0.001$) and DBPme ($\beta\pm\text{SE}=0.14\pm0.07$; $p=0.040$) were found to be independent predictors of the percent decline in the nighttime BP (Table 4).

Discussion

In this study, mean HRR1 was lower in the WCH non-dipper group compared to the WCH dipper group. Overall, in the WCH group, there was a positive correlation between

Table 2. Results of the treadmill exercise test grouped according the dipper and non-dipper status in the normotensive and WCH groups

Variable	Normotensive		p	WCH		p
	Non-dipper, n=35	Dipper, n=35		Non-dipper, n=55	Dipper, n=55	
Duration of exercise test, min	8.7±2.1	9.0±2.3	0.571	8.9±2.5	9.2±2.4	0.610
Peak exercise capacity, METs	12.8±2.6	13.4±2.4	0.320	12.6±2.3	13.2±2.5	0.300
Maximal HR, bpm	155.0±10.6	156.6±8.5	0.488	158.9±7.4	160.1±8.4	0.528
SBPme, mmHg	143.2±6.0	141.8±5.4	0.309	145.5±5.3	146.0±6.2	0.718
DBPme, mmHg	82.4±7.3	84.5±7.5	0.239	82.0±5.7	84.2±6.4	0.134
HRR1, bpm	26.8±3.6	29.0±3.4	0.011*	25.5±3.0	30.3±3.1	<0.001*
HRR2, bpm	48.3±6.1	49.8±6.8	0.335	47.0±5.5	48.1±5.9	0.423
HRR3, bpm	62.9±6.3	63.3±7.0	0.802	64.4±6.0	64.9±6.8	0.745

Data are mean±SD. * significantly different from respective non-dipper value. bpm, beats per minute; HRR1–3, heart rate recovery indices; SBPme, systolic blood pressure at maximum exercise; DBPme, diastolic blood pressure at maximum exercise; METs, metabolic equivalents.

the HRR1 values and the decline in the nighttime BP. Linear regression analysis showed that HRR1 was an independent risk factor for the decline in BP. Review of the literature showed that the current study is the first to examine whether HRR plays a role in the differences in the circadian BP profiles of WCH patients.

WCH is a subtype of hypertension with recently increasing incidence among patients and awareness among clinicians [21]. In previous studies, the etiopathogenesis of WCH has been investigated, as well as in cases of masked hypertension [22, 23]. If the causative factors of WCH can be identified, it will also be easier to prevent WCH-related cardiovascular diseases [24–26]. The frequency of WCH is associated with ethnicity, gender, age, high anxiety, metabolic syndrome, chronic kidney disease and abnormal sympathetic and endocrine systems associated with ethnicity, gender, age, high anxiety, metabolic syndrome, chronic kidney disease and abnormal sympathetic and endocrine systems [27–30]. BPs that are normal until measured by a healthcare professional may suggest that this hypertension is related to the autonomic nervous and endocrine systems. In addition, WCH patients are thought to be greater risk of cardiovascular events [31]. In a metaanalysis study evaluating the effect of WCH on cardiac structure and function, left atrial diameter and left ventricular mass index were found to be higher, while E/A ratio was lower [32]. However, these findings may be related to comorbid diseases whose effects have not been adjusted. Therefore, we excluded those with any comorbid disease in our study. This may cause echocardiographic findings to be similar between the WCH and normotensive groups.

HRR is described as the rate of decrease or normalization of the heart rate within a few minutes after stopping physical exercise [33]. It, thus, indicates the dynamic balance and synchronized interaction between parasympathetic reactivation and sympathetic withdrawal [33]. The attenuation of HRR, or a blunted decrease in heart rate immediately post exercise, suggests prevailing sympathetic activity

Table 3. Variables associated with the percent decline in nighttime BP

Variables	Normotensive		WCH	
	r	p	r	p
Age	-0.031	0.798	-0.180	0.122
Male gender	0.139	0.252	0.071	0.624
BMI	0.030	0.982	0.070	0.630
Basal HR	0.170	0.159	0.105	0.757
Left ventricular EF	0.150	0.205	0.173	0.143
LVDD	-0.131	0.248	-0.150	0.120
LVSD	0.180	0.192	0.110	0.653
IVST	0.106	0.513	0.103	0.806
IVRT	-0.114	0.406	-0.132	0.385
LA diameter	-0.143	0.319	0.124	0.267
E/A ratio	-0.122	0.395	-0.138	0.205
LVMI	-0.178	0.204	-0.150	0.186
Duration of exercise test, min	0.098	0.459	0.115	0.367
Peak exercise capacity (METs)	0.108	0.322	0.172	0.169
Maximal HR, bpm	0.084	0.658	0.164	0.209
SBPme	0.298	0.035*	0.313	0.028*
DBPme	0.315	0.010*	0.340	0.008*
HRR1	0.351	0.003*	0.523	<0.001*
HRR2	0.152	0.285	0.175	0.185
HRR3	0.114	0.315	0.168	0.274

* significant variable. BMI, body mass index; DBPme, diastolic blood pressure at maximum exercise; E/A, peak velocity of early diastolic flow/peak velocity of late diastolic flow; EF, ejection fraction; HR, heart rate; HRR1–3, heart rate recovery indices; IVRT, isovolumetric relaxation time; IVST: interventricular septal thickness; LVEDD, left ventricular end-diastolic diameter; LVESD, left ventricular end-systolic diameter; LVMI, left ventricular mass index; METs, metabolic equivalents; SBPme, systolic blood pressure at maximum exercise.

СОХРАНИТЬ САМУЮ ЖИЗНЬ

ФОРСИГА – ЕДИНСТВЕННЫЙ ПРЕПАРАТ, ПОКАЗАВШИЙ СНИЖЕНИЕ РИСКА СЕРДЕЧНО-СОСУДИСТОЙ СМЕРТИ БЕЗ ТИТРАЦИИ ДЛЯ ПАЦИЕНТОВ С ХСНФВ^{#1-3}

↓ 26%

Снижает риск СС смерти и госпитализаций по поводу СН^{*,3}

ОР 0,74, ДИ 95% (0,65–0,85), $p = 0,000001$, NNT = 21

↓ 18%

Снижает риск
СС смерти^{3**}

OP 0.82, ДИ 95% (0.69–0.98)

30%

Снижает риск госпитализаций³

ОР 0,70, ДИ 95% (0,59–0,85)

⁴ Имеется в виду сочетание характеристик: снижения относительного риска сердечно-сосудистой смерти как компонента первичной конечной точки в исследовании DAPA-HF и отсутствия необходимости титровать дозу дапаглифлоцина для пациентов с ХСН/ХФ вне зависимости от СД 2 типа.

**1 таблетка
10 мг¹**

1 раз
в сутки¹

без
титрации

включен в ЖНВЛП⁴ и ОНЛС⁵,
в рекомендации по ХСН²

ХСНФВ – хроническая сердечная недостаточность со сниженной фракцией выброса, СС – сердечно-сосудистый, СН – сердечная недостаточность. Событие, породившее кончную точку: сорвавшую сосудистую смерть, госпитализацию и неотложочное обращение по поводу СН. *Выявление неотложечного

1. Инструкция по медицинскому применению лекарственного препарата «Фармадиокс» (таблетки, № 10, № 15), регистрационный удостоверение №Р02201700271 от 21.08.2017 г. 2. Клинические рекомендации хроническая сердечная недостаточность 2020. https://scardio.ru/content/zhurnaly/2020/zhm_rekomendacii_2020.pdf (дата информации 14.10.2020 г.). 3. McMurray JJ et al. Diuretics in Patients with Heart Failure and Reduced Ejection Fraction. *N Engl J Med* 2019; **381**:21195–2006. 4. Перечень химически неоднородных и химически схожих лекарственных препаратов для медицинского применения. 5. Перечень лекарств для обеспечения отдельных граждан. Материал предназначен для специалистов здравоохранения. Имеются противопоказания. Перед назначением ознакомьтесь, пожалуйста, с полной инструкцией по медицинскому применению препарата.

000 «АстраЗенека Фармасьютикалз». 123112, г. Москва,

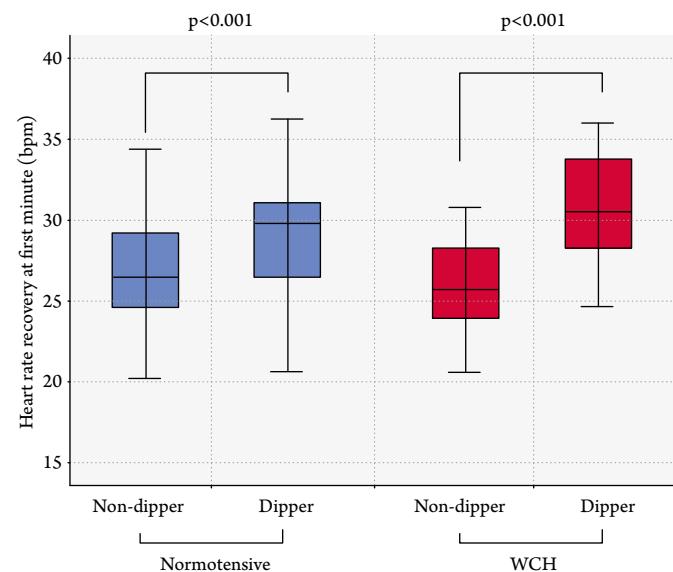
1-й Красногвардейский проезд, д.21, стр.1, Башня «ОКО», 30 этаж.
Тел.: +7 (495) 799-56-99, факс: +7 (495) 799-56-98. www.astrazeneca.ru, www.az-most.ru.
FOR_RU-13070. Дата одобрения: 28.03.2022, Дата истечения: 27.03.2024.

AstraZeneca

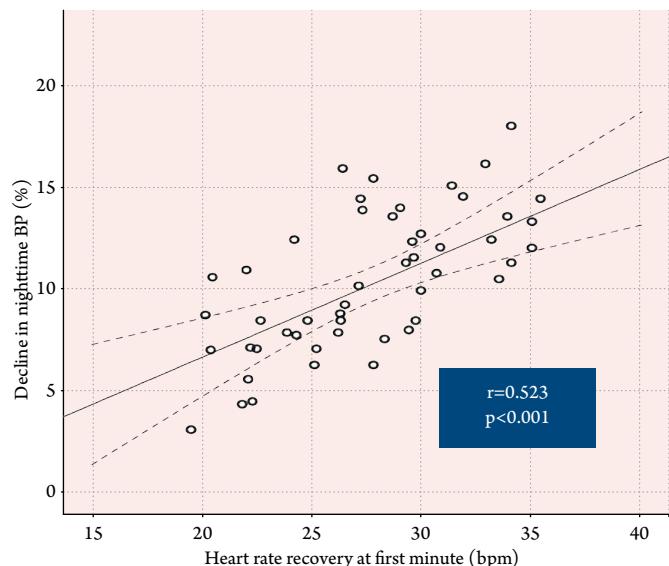
Table 4. Parameters predicting the decline in the nighttime BP (%) in the WCH patients

Variables	Univariable Regression Analysis			Multivariable Regression Analysis		
	$\beta \pm SE$	95% CI, lower; upper	p	$\beta \pm SE$	95% CI, lower; upper	p
Age	-0.05±0.03	-0.12; 0.01	0.122	-	-	-
Male gender	0.49±0.99	-1.51; 2.50	0.624	-	-	-
BMI	0.06±0.12	-0.18; 0.29	0.630	-	-	-
Basal HR	0.02±0.05	-0.09; 0.12	0.757	-	-	-
LV EF	0.01±0.04	-0.07; 0.07	0.143	-	-	-
Duration of exercise test	0.05±0.04	-0.06; 0.08	0.367	-	-	-
Peak exercise capacity	0.03±0.03	-0.10; 0.14	0.169	-	-	-
Maximal HR	0.10±0.60	-0.02; 0.14	0.209	-	-	-
SBPme	0.14±0.05	0.05; 1.05	0.028*	-	-	-
DBPme	0.16±0.04	0.04; 0.48	0.008*	0.14±0.07	0.03; 0.28	0.040*
HRR1	0.46±0.11	0.24; 0.68	<0.001*	0.43±0.11	0.22; 0.65	<0.001*
HRR2	0.14±0.12	-0.30; 1.22	0.185	-	-	-
HRR3	0.10±0.09	-0.21; 0.98	0.274	-	-	-

Adjusted R²=0.270; p<0.001*


*significant variable. β , regression coefficients; BMI, body mass index; DBPme, diastolic blood pressure at maximum exercise; EF, ejection fraction; HR, heart rate HRR1–3, heart rate recovery indices; LV, left ventricular; SBPme, systolic blood pressure at maximum exercise; SE, standard errors.

and inoperative parasympathetic activity, and therefore autonomic nervous system dysfunction. Sympathetic hyperactivity results in increased hemodynamic stress, cardiovascular workload, endothelial dysfunction, left ventricular hypertrophy, coronary artery spasm, stroke, severe arrhythmia, and increased cardiac mortality [34–36]. Therefore, the attenuation of HRR is thought to be associated with cardiovascular dysfunction, cardiovascular disease, and all-cause mortality [10, 37].


Okutucu et al. [16] investigated the relationship between non-dipper and dipper type of circadian rhythm of BP and HRR in patients with primary hypertension and found that the mean HRR1 and the decline in nighttime BP were greater

in hypertensive dippers compared to the hypertensive non-dippers. They also found a positive correlation between the HRR1 and the decline in the nighttime BP in hypertensive dippers. Similarly, Kim et al. [18] found higher HRR1 in hypertensive dippers. In a study on hypertensive patients, Yu et al. [38] reported lower HRR values in patients with uncontrolled, and therefore high, BP than in patients with controlled BP. In a prospective study on healthy subjects, Jae et al. [17] followed 1,855 patients for 4 yrs. By that time, 179 of the patients had developed hypertension. Analyses revealed that attenuated HRR after the exercise test was independently associated with the development of hypertension. In WCH patients,

Figures 1. HRR1 distribution in the dipper and non-dipper groups

Figures 2. Relationship between HRR1 and decline in the nighttime BP (%)

HRR1 was lower in non-dipper group compared to dipper group. In addition, there was a positive correlation between the values of HRR1 and the decline in nighttime BP. These results suggest a role of the autonomic nervous system in the failure of the expected nighttime drop in the BP, since HRR1, a noninvasive marker, is an indicator of autonomic nervous system function. Sheng et al. [9] investigated the indices of BP and heart rate variability with a finometer device in WCH patients. They found a higher sympathetic activity in WCH patients compared to normotensives. In addition, linear regression analysis showed that the HRR1 and DBPme were independent predictors of a decline in the nighttime BP. This supports the results of the current study

A non-dipper type of circadian rhythm of BP is thought to be a risk factor for target organ damage and cardiovascular diseases, since the sympathetic nervous system is thought to play a role in the failure of the expected nighttime drop in BP [39–41]. Increased parasympathetic activity and decreased sympathetic activity plays a role in cardioprotective effects [42]. An increase in sympathetic activity is thought to be a risk factor for increased cardiac contractions, fatal arrhythmias, and endothelial damage [16, 43]. Since the attenuation of HRR is also associated with increased sympathetic activity, it may be possible to use HRR as a prognostic marker for target organ damage and cardiovascular diseases in hypertensive patients.

The main limitations of this study include its cross-sectional study design and low number of subjects. In addition, the non-dipper pattern and the attenuation of HRR were both attributed to sympathetic hyperactivation. Inclusion of a more direct marker of sympathetic hyperactivity and its relationships with the non-dipper BP pattern and HRR would have added further strength to the conclusions this study. To determine whether HRR is a risk factor in WCH, it would be necessary to measure HRR at moments of both high and normal BP. In addition, these results should be compared with the results of studies that have the same design but include subjects with primary

hypertension. Another limitation of the study is that no measurements of target organ damage were included. Such measurements might prove that HRR is associated with hypertension-related target organ damage. However, this limitation can be addressed in future studies.

Conclusions

The present study showed a correlation between the non-dipper BP pattern and attenuation of the HRR1. Delayed recovery of the heart rate after the exercise stress test was associated with a non-dipper type of circadian rhythm of BP. This association was more pronounced in the WCH patients, and these patients are at risk of autonomic dysfunction.

Ethical approval

Lokman Hekim University Non-Interventional Clinical Research Ethics Committee, Decision No:2020–106. All study procedures were in accordance with the Helsinki Declaration, updated in 2013. Informed consent was obtained from all participants.

Authors' contribution

Conception and design: F.E. and S.O.; Acquisition of data: F.E., A.K. and O.Y.; Analysis and interpretation of the data: F.E., A.K., O.Y., M.S.A., C.S., K.E., S.O.; Statistical analysis: M.S.A., C.S., K.E., O.S.; Drafting of the manuscript: F.E.; Critical revision of the manuscript for important intellectual content: M.S.A., C.S., S.O. and K.E.; Supervision, as the major investigator: F.E.; Literature research- F.E., A.K., O.Y., M.S.A., C.S., K.E., and S.O. All authors read and approved the final version of the manuscript.

Funding

The authors did not receive any grants for this study.

No conflict of interest is reported.

The article was received on 21/10/2021

REFERENCES

1. Pickering TG, James GD, Boddie C, Harshfield GA, Blank S, Laragh JH. How common is white coat hypertension? *JAMA*. 1988;259(2):225–8. PMID: 3336140
2. Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). *Journal of Hypertension*. 2013;31(7):1281–357. DOI: 10.1097/01.hjh.0000431740.32696.cc
3. Nuredini G, Saunders A, Rajkumar C, Okorie M. Current status of white coat hypertension: where are we? *Therapeutic Advances in Cardiovascular Disease*. 2020;14:175394472093163. DOI: 10.1177/1753944720931637
4. Barroso WKS, Feitosa ADM, Barbosa ECD, Miranda RD, Brandão AA, Vitorino PVO et al. Prevalence of Masked and White-Coat Hypertension in Pre-Hypertensive and Stage 1 Hypertensive patients with the use of TeleMRPA. *Arquivos Brasileiros de Cardiologia*. 2019;113(5):970–5. DOI: 10.5935/abc.20190147
5. Mancia G, Facchetti R, Bombelli M, Cuspidi C, Grassi G. White-Coat Hypertension: Pathophysiological and Clinical Aspects: Excellence Award for Hypertension Research 2020. *Hypertension*. 2021;78(6):1677–88. DOI: 10.1161/HYPERTENSIONAHA.121.16489
6. Cobos B, Haskard-Zolnierk K, Howard K. White coat hypertension: improving the patient–health care practitioner relationship. *Psychology Research and Behavior Management*. 2015;8:133–41. DOI: 10.2147/PRBM.S61192
7. Song J-J, Ma Z, Wang J, Chen L-X, Zhong J-C. Gender Differences in Hypertension. *Journal of Cardiovascular Translational Research*. 2020;13(1):47–54. DOI: 10.1007/s12265-019-09888-z
8. Koroboki E, Manios E, Psaltopoulou T, Vemmos K, Michas F, Alexaki E et al. Circadian variation of blood pressure and heart rate in normotensives, white-

coat, masked, treated and untreated hypertensives. *Hellenic journal of cardiology*. 2012;53(6):432–8. PMID: 23178426

9. Sheng C-S, Li F-K, Cheng Y-B, Wei F-F, Huang J-F, Guo Q-H et al. Blood pressure and heart rate variability and baroreflex sensitivity in white-coat, masked, and sustained hypertension. *Hypertension Research*. 2020;43(8):772–80. DOI: 10.1038/s41440-020-0413-5
10. Qiu S, Cai X, Sun Z, Li L, Zuegel M, Steinacker JM et al. Heart Rate Recovery and Risk of Cardiovascular Events and All-Cause Mortality: A Meta-Analysis of Prospective Cohort Studies. *Journal of the American Heart Association*. 2017;6(5):e005505. DOI: 10.1161/JAHA.117.005505
11. Park J-I, Shin S-Y, Park SK, Barrett-Connor E. Usefulness of the Integrated Scoring Model of Treadmill Tests to Predict Myocardial Ischemia and Silent Myocardial Ischemia in Community-Dwelling Adults (from the Rancho Bernardo Study). *The American Journal of Cardiology*. 2015;115(8):1049–55. DOI: 10.1016/j.amjcard.2015.01.536
12. Cohen JB, Lotito MJ, Trivedi UK, Denker MG, Cohen DL, Townsend RR. Cardiovascular Events and Mortality in White Coat Hypertension: A Systematic Review and Meta-analysis. *Annals of Internal Medicine*. 2019;170(12):853–62. DOI: 10.7326/M19-0223
13. Lindemberg S, Chermont S, Quintão M, Derossi M, Guilhon S, Bernardez S et al. Heart Rate Recovery in the First Minute at the Six-Minute Walk Test in Patients with Heart Failure. *Arquivos Brasileiros de Cardiologia*. 2014;102(3):279–87. DOI: 10.5935/abc.20140036
14. Van de Vegt YJ, van der Harst P, Verweij N. Heart Rate Recovery 10 Seconds After Cessation of Exercise Predicts Death. *Journal of the American Heart Association*. 2018;7(8):e008341. DOI: 10.1161/JAHA.117.008341
15. Fonseca GWP da, Santos MR dos, Souza FR de, Costa MJA da, Haehling S von, Takayama L et al. Sympatho-Vagal Imbalance is Associated with Sarcopenia in Male Patients with Heart Failure. *Arquivos Brasileiros de Cardiologia*. 2019;112(6):739–46. DOI: 10.5935/abc.20190061
16. Okutucu S, Kabakci G, Deveci OS, Aksøy H, Kaya EB, Aytemir K et al. Relationship Between Exercise Heart Rate Recovery and Circadian Blood Pressure Pattern. *The Journal of Clinical Hypertension*. 2010;12(6):407–13. DOI: 10.1111/j.1751-7176.2010.00279.x
17. Jae SY, Bunsawat K, Fadel PJ, Fernhall B, Choi Y-H, Park JB et al. Attenuated Heart Rate Recovery After Exercise Testing and Risk of Incident Hypertension in Men. *American Journal of Hypertension*. 2016;29(9):1103–8. DOI: 10.1093/ajh/hpw028
18. Kim D-J, Cho K-I, Cho E-A, Lee J-W, Park H-J, Kim S-M et al. Association among epicardial fat, heart rate recovery and circadian blood pressure variability in patients with hypertension. *Clinical Hypertension*. 2015;21(1):24. DOI: 10.1186/s40885-015-0034-5
19. Stergiou GS, Kario K, Kollias A, McManus RJ, Ohkubo T, Parati G et al. Home blood pressure monitoring in the 21st century. *The Journal of Clinical Hypertension*. 2018;20(7):1116–21. DOI: 10.1111/jch.13284
20. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. *European Heart Journal*. 2018;39(33):3021–104. DOI: 10.1093/eurheartj/ehy339
21. Ohkubo T, Kikuya M, Metoki H, Asayama K, Obara T, Hashimoto J et al. Prognosis of “Masked” Hypertension and “White-Coat” Hypertension Detected by 24-h Ambulatory Blood Pressure Monitoring. *Journal of the American College of Cardiology*. 2005;46(3):508–15. DOI: 10.1016/j.jacc.2005.03.070
22. Alwan H, Pruijm M, Ponte B, Ackermann D, Guessous I, Ehret G et al. Epidemiology of Masked and White-Coat Hypertension: The Family-Based SKIPOGH Study. *PLoS ONE*. 2014;9(3):e92522. DOI: 10.1371/journal.pone.0092522
23. Gorostidi M, Vinyoles E, Banegas JR, de la Sierra A. Prevalence of white-coat and masked hypertension in national and international registries. *Hypertension Research*. 2015;38(1):1–7. DOI: 10.1038/hr.2014.149
24. Taher ZA, Khayyat WW, Balubaid MM, Tashkandi MY, Alamoudi SM, Kinsara AJ. Complications of White-coat Hypertension Compared to a Normotensive and Hypertensive Population. *Heart Views: The Official Journal of the Gulf Heart Association*. 2021;22(1):8–12. DOI: 10.4103/HEART-VIEWS.HEARTVIEWS_64_20
25. Johansson MAK, Östgren CJ, Engvall J, Swahn E, Wijkman M, Nystrom FH. Relationships between cardiovascular risk factors and white-coat hypertension diagnosed by home blood pressure recordings in a middle-aged population. *Journal of Hypertension*. 2021;39(10):2009–14. DOI: 10.1097/HJH.0000000000002888
26. Huang Q-F, Yang W-Y, Asayama K, Zhang Z-Y, Thijss L, Li Y et al. Ambulatory Blood Pressure Monitoring to Diagnose and Manage Hypertension. *Hypertension*. 2021;77(2):254–64. DOI: 10.1161/HYPERTENSIONNAHA.120.14591
27. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. *Journal of Hypertension*. 2018;36(10):1953–2041. DOI: 10.1097/HJH.0000000000001940
28. Cai P, Peng Y, Chen Y, Li L, Chu W, Wang Y et al. Association of thyroid function with white coat hypertension and sustained hypertension. *The Journal of Clinical Hypertension*. 2019;21(5):674–83. DOI: 10.1111/jch.13536
29. Tatar E, Uslu A, Tasli F, Karatas M. Relationship between diurnal blood pressure and renal histopathological changes in white coat hypertension. *Journal of Nephrology*. 2017;30(4):551–6. DOI: 10.1007/s40620-017-0382-1
30. Thomas O, Shipman KE, Day K, Thomas M, Martin U, Dasgupta I. Prevalence and determinants of white coat effect in a large UK hypertension clinic population. *Journal of Human Hypertension*. 2016;30(6):386–91. DOI: 10.1038/jhh.2015.95
31. Asayama K, Li Y, Franklin SS, Thijss L, O’Brien E, Staessen JA. Cardiovascular Risk Associated with White-Coat Hypertension: Con Side of the Argument. *Hypertension*. 2017;70(4):676–82. DOI: 10.1161/HYPERTENSIONNAHA.117.08902
32. Cuspidi C, Rescaldani M, Tadic M, Sala C, Grassi G, Mancia G. White-coat hypertension, as defined by ambulatory blood pressure monitoring, and subclinical cardiac organ damage: a meta-analysis. *Journal of Hypertension*. 2015;33(1):24–32. DOI: 10.1097/HJH.0000000000000416
33. Peçanha T, Silva-Júnior ND, Forjaz CL de M. Heart rate recovery: autonomic determinants, methods of assessment and association with mortality and cardiovascular diseases. *Clinical Physiology and Functional Imaging*. 2014;34(5):327–39. DOI: 10.1111/cpf.12102
34. Shanks J, Herring N. Peripheral cardiac sympathetic hyperactivity in cardiovascular disease: role of neuropeptides. *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology*. 2013;305(12):R1411–20. DOI: 10.1152/ajpregu.00118.2013
35. Grassi G, Seravalle G, Mancia G. Sympathetic activation in cardiovascular disease: evidence, clinical impact and therapeutic implications. *European Journal of Clinical Investigation*. 2015;45(12):1367–75. DOI: 10.1111/eci.12553
36. Nishimura M, Tokoro T, Nishida M, Hashimoto T, Kobayashi H, Yamazaki S et al. Sympathetic overactivity and sudden cardiac death among hemodialysis patients with left ventricular hypertrophy. *International Journal of Cardiology*. 2010;142(1):80–6. DOI: 10.1016/j.ijcard.2008.12.104
37. Johnson NP, Goldberger JJ. Prognostic Value of Late Heart Rate Recovery After Treadmill Exercise. *The American Journal of Cardiology*. 2012;110(1):45–9. DOI: 10.1016/j.amjcard.2012.02.046
38. Yu Y, Liu T, Wu J, Zhu P, Zhang M, Zheng W et al. Heart rate recovery in hypertensive patients: relationship with blood pressure control. *Journal of Human Hypertension*. 2017;31(5):354–60. DOI: 10.1038/jhh.2016.86
39. Aydin E, Ates I, Fettah Arikhan M, Yilmaz N, Dede F. The ratio of monocyte frequency to HDL cholesterol level as a predictor of asymptomatic organ damage in patients with primary hypertension. *Hypertension Research*. 2017;40(8):758–64. DOI: 10.1038/hr.2017.36
40. Ates I, Ozkaynar N, Ates H, Karakulak UN, Kursun O, Topcuoglu C et al. Elevated circulating sST2 associated with subclinical atherosclerosis in newly diagnosed primary hypertension. *Hypertension Research*. 2016;39(7):513–8. DOI: 10.1038/hr.2016.16
41. Dauphinot V, Gosse P, Kossovsky MP, Schott A-M, Rouch I, Pichot V et al. Autonomic nervous system activity is independently associated with the risk of shift in the non-dipper blood pressure pattern. *Hypertension Research*. 2010;33(10):1032–7. DOI: 10.1038/hr.2010.130
42. Van Bilsen M, Patel HC, Bauersachs J, Böhm M, Borggrefe M, Brutsaert D et al. The autonomic nervous system as a therapeutic target in heart failure: a scientific position statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. *European Journal of Heart Failure*. 2017;19(11):1361–78. DOI: 10.1002/ejhf.921
43. Zhang DY, Anderson AS. The Sympathetic Nervous System and Heart Failure. *Cardiology Clinics*. 2014;32(1):33–45. DOI: 10.1016/j.ccl.2013.09.010