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ECHOCARDIOGRAPHY IN THE ASSESSMENT
OF INTRAVENTRICULAR FLOWS AND PRESSURE GRADIENTS
IN OBSTRUCTIVE HYPERTROPHIC CARDIOMYOPATHY

To evaluate results of myomectomy by intraventricular pressure gradients (IVPG) and blood flows in

The studyincludedatotal of 76 subjects, 42 patientswith OHCMP (mean age, 39+7 years) and 34 healthy
volunteers (mean age, 41£3 years). Prior to and after myomectomy, transthoracic echocardiography
was performed and followed by digital image processing and calculation of IVPG and left ventricular
(LV) vortex flows. Vector analysis was used to estimate the myocardial displacement rate (V), vortex

The study showed a dynamic decrease in the LV apex-to-outflow IVPG by more than 50% and recovery
of myocardial contraction velocity in the septal area (p<0.001). The decrease in LV cavity pressure
gradient serves as an index for evaluating the effectiveness of OHCMP correction. Myomectomy
reduces the load on the myocardium and abolishes mitral valve regurgitation with improvement of LV
blood flows as also evidenced by the dynamics of long axis velocity change during the cardiac cycle

Effectiveness of the surgical correction of OHCMP is based on the dynamics of myocardial contraction
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Introduction

Hypertrophic cardiomyopathy is one of the most
common hereditary cardiomyopathies with a rate of about
1:500 in the general adult population [1, 2]. The matter
of diagnosis and treatment in obstructive hypertrophic
cardiomyopathy (OHCMP) is now widely discussed
in relation to clinical practice. Obstruction is caused by
myocardial hypertrophy and systolic contact between the
anterior mitral valve (MV) leaflet and the interventricular
septum (IVS) [3-6]. Over the past decade, the rate of
OHCMP diagnosis has increased progressively in the
general population. This trend is due to an increased
incidence of this disease and the wider practical application
of high-quality instrumental techniques for examination of
the heart, especially echocardiography. There is currently no
ultimate answer to whether drug and surgical treatments are
effective. It is generally accepted that treatment is effective,
if the pressure gradient between the left ventricular (LV)
cavity and its outflow tract decreases by a magnitude of
2-3 after surgery [7-9]. The use of surgical techniques, i.e.,
myoseptectomy, correction of MV, chordae, and papillary
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muscles, continues to be under discussion worldwide [9,
10], although questions still remain about the efficacy of
surgeries [11]. Moreover, residual LV gradients and the
distribution of turbulent flows are unclear with regard to
the volume of surgery. Modern methods of examination,
such as vector analysis, evaluation of turbulent intracardiac
blood flows, can be introduced into clinical practice to
help understand the course of compensation processes,
and assess the adequacy of surgical correction in cardiac
pathologies [12, 13]. The literature currently discusses the
assessment of turbulent blood flows in valve pathologies,
coronary heart disease, and the possibility of using this new
way of evaluating myocardial function.

Aim
To evaluate myectomy results by intraventricular pressure
gradients (IVPG) and blood flow in patients with OHCMP.

Material and methods
A prospective examination was performed in 42 pa-
tients admitted for surgical treatment of OHCMP. All
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patients underwent transaortic myoseptectomy and
resection of papillary muscles. The mean age of patients
was 39%7 years of age. 28 patients were male, and
14 were female. The control group included 34 healthy
volunteers whose mean age was 41+3 years. Patients
with unsatisfactory ultrasound location, heart rate and
conduction disorders were excluded from the analysis.

The local ethics committee approved the study. All
subjects signed informed consent to participate in the
study.

Echocardiography

All subjects underwent transthoracic echocardiography
at rest on a VIVID 7 Dimension device with a VIVID
E93.5-5.5 MHz multi-frequency array transducer using
standard electrocardiogram (ECG) techniques. Patients
with OHCMP were examined before surgery and on day
7-10 after surgery.

Transthoracic echocardiography included grayscale
M-modal and 2D registration (not less than 50 fps), color,
pulsed wave, and continuous-wave Doppler in the area
of LV outflow tract (LVOT) and the mitral, aortic, and
tricuspid valves. All static and moving-image examinations
(3-5 cardiac cycle cine loops) were stored in the EchoPAC
7 and Multivox workstation memory for subsequent assay
and processing.

M-modal measurements of the diastolic and systolic
thickness of the IVS and the LV posterior wall were made
in the standard parasternal long-axis view. Left ventricular
end-systolic volume (LVESV) and end-diastolic volume

(LVEDV), and left ventricular ejection fraction (LVEF)
were determined in the apical four- and two-chamber
views using the method of disks (modified Simpson’s
rule).

The systolic spectrum of linear blood flow velocity
in the LVOT was registered in the pulsed wave Doppler
mode. The reference volume was set at the center of LVOT,
10 mm proximal from the closed aortic valve leaflets, thus
determining the maximum pressure gradient.

Off-line analysis of echocardiograms.
Myocardial contraction rate

In order to obtain quantitative vector analysis data,
one cardiac cycle was selected from the stored cine loops
in each of the three apical views of the LV of satisfactory
image quality (50-80 frames per cycle). The LV endo-
cardial contour was then manually traced in the best
quality frame. It was then refined frame by frame, and, if
necessary, corrected so that the tracing line coincided with
the endocardial border throughout the selected cardiac
cycle. Next, the image processing software algorithm built
a vector profile of myocardial motion. An 18-segment
model was used for the LV, with 6 segments in each of the
three sections at three levels: basal, middle, and apical. The
vector analysis provided quantitative information about the
movement of each segment, ie., myocardial contraction
rate (V) (Figure 1). This in turn was used to evaluate the
LV myocardial contraction in the basal, middle, and apical
IVS at R-waves, the start and end of the T-wave in the ECG.
Next, a comparative analysis of the normal and pathological

Figure 1. Vectors of myocardial contraction velocities in a healthy person during the maximum
ejection phase in the apical three-chamber view (A) and curves (top-to-bottom) of myocardial
contraction velocities in the interventricular septum. Rates of changes in the long axis, ECG (B)

Markers: the red vertical line represents maximum ejection. The graphs correspond to the vector colors:
yellow — posterior basal segment; blue — posterior middle segment; green — posterior apical segment;
pink - anteroseptal apical segment (V,); blue - anteroseptal middle segment (V,);

dark-red - anteroseptal basal segment (V).
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pattern was carried out considering the rate of change in the
LV long axis (dL/dt).

Intraventricular pressure
gradient and blood flows

Measurable parameters (velocity, pressure gradients) of
intraventricular blood flows were estimated using an iterative
phase retrieval technique for color Doppler images according
to the methods [12, 13]. The algorithm involves extracting
digital characteristics of the flows and tracking the cavity
contour. This can be corrected manually because cardiac
motion may significantly change the contour, thus requiring
additional adjustment and estimation of the flow profiles,
shear stress, and elasticity. Blood viscosity was taken as equal
to 3.88 MPa, corresponding to normal blood viscosity. LV
vortex flows were estimated by the velocity gradients of the
main vector fields. Data obtained for all three cardiac cycles
was estimated to avoid the effects of computation errors
that occur at the beginning of the calculation. The resulting
images contained quantitative characteristics of blood flows
and apical-to-basal LV IVPG. Figure 2 displays images at
different moments of normal systole.

The use of the phase structure of the cardiac cycle is
fundamental in estimating these parameters. The phases of
isovolumic stress, maximum ejection, and end-systole were
selected as the reference points.

Statistical analysis of the data obtained was carried out
using Statistica 12.0 and JMP 7. The results are presented as
the mean and the standard deviation (M+SD) in graphs and
tables. The obtained data was compared. The significance
of differences was evaluated using the Student t-test and the
Mann-Whitney U-test, depending on the distribution of
variables and the chi-squared test. A correlation analysis was
performed, and the bivariate Pearson correlation coefficients
(r) were calculated to identify the correlations between the
characteristics being analyzed and the observations. The
critical level of statistical significance p<0.0S was used in all
statistical analysis procedures.

Results
Correlations between the rate of myocardial
contraction and intraventricular pressure gradient

Before the surgery, the peak LVOT pressure gradient
in patients with OHCMP was more than 50 mmHg
(Table 1). On patients with OHCMP Systolic ejection
(SE) was complicated by higher than normal contraction
velocities in the IVS area. Statistically significant differences
between patients of the compared groups were observed in
LVEDV and LVESYV, and IVS thickness. LVEF was normal.
Myocardial hypertrophy develops into the LV cavity and
reduces its volume. Some patients with OHCMP had a
significant reduction of the LV cavity in systole, especially
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if the LV wall thickness was more than 2 cm accompanied
by hypertrophy of the papillary muscles. In these cases, a
pressure gradient of more than 50 mmHg can be registered
in systole. The rate of change in the long LV axis was not
directly dependent on the rate of change in the LV volume,
and low values of dL/dt within 20-30 mm/s observed
in the entire sample of patients with OHCMP. Figure 3
shows the myocardial velocity vectors and graphs of the
IVS velocities in a patient with OHCMP before and after
myectomy.

Figure 2. Color mapping of intraventricular

pressure gradients superimposed by intracardiac blood flow
vectors (green arrows) in a healthy person during systole:
Rwave (A), the beginning of T wave (B), the end of T wave (C)

To the left is the pressure gradient scale in mmHg,
to the right is the blood flow velocity scale.
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Figure 3. Myocardial contraction velocity vectors in a patient with OHCMP during maximum ejection before surgery
(A) and on day 7 after surgery (A’); apical three-chamber view and curves (top-to-bottom) of the rate of myocardial
contraction. Rate of change in the long axis, ECG before surgery (B) and on day 7 after surgery (B’)

Markers: the red vertical line represents maximum ejection. The graphs correspond to the vector colors:

yellow — posterior basal segment; blue — posterior middle segment; green — posterior apical segment;

pink — anteroseptal apical segment (V,); blue - anteroseptal middle segment (V,); dark-red — anteroseptal basal segment (V).
On the left of the graphs is the rate of myocardial contraction. OHCMP, obstructive hypertrophic cardiomyopathy.

The analysis of basal contraction velocity (V1) in
healthy persons and patients with OHCMP showed
that this indicator was significantly twice as reduced
before and after surgery, in comparison with the normal
values during the entire phase of SE (Figure 4, A). There
was no correlation between systolic phases of the cycle,
both normal and after surgery. This is evidenced by the
coefficient of determination (r2=0.27).

The contraction velocities in the middle IVS, both
before and after surgery, were higher than normal during
the maximum ejection (S-wave) but did not correlate. The
trend is the same for the apical (see Figure 4, B, C). It is
typical of increased IVPG and additional vortex flows in LV
overload against resistance.
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Turbulent flows and relationship
with pressure gradient

During the phase of the maximum ejection, a healthy
person has uniform and clockwise blood flow with one basal
turbulent vortex (Figure 2). During maximum ejection, in
patients with OHCMP before surgery, the main ejection
flow and the turbulence zone are shifted to the middle
LV with the formation of additional swirl zones along the
posterior and inferior LV walls of the main flow (Figure S, B).
This is due to the high flow velocity in LVOT associated
with IVS hypertrophy. The surgical removal of an additional
barrier in the septum changes the flow pattern, resulting in
the normalization of its direction and velocities at the end of
the systolic blood ejection (Figure S, B’).
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Table 1. Hemodynamics in patients with obstructive hypertrophic cardiomyopathy

Before After P

Parameter Normal (1) surgery (2) surgery (3) | ) | P23
Heart rate, beats/min 6716 62+10 6417 0.01 0.3 0.22
Systolic arterial pressure, mmHg 124+11 121+18 13210 0.48 0.05 0.06
Diastolic arterial pressure, nmHg 7316 73+10 80+2 0.36 0.07 0.08
LV CDR, ml 97+16 76126 108+7 <0.001 0.07 <0.001
LV CSR, ml 38+%8 20+7 40£3 <0.001 0.13 <0.001
Shock ejection, ml 5313 5521 675 0.28 0.09 0.11
LVLV, % 63£5 74+6 62+1 <0.001 0.22 <0.001
Ventricular septum thickness, cm 0,9+0,1 2,2+0,4 1,9+ 0,3 <0.001 <0.001 0.07
AP BTRVTL]J, mmHg 2+0,3 69+19 13£3,1 <0.001 <0.001 <0.001
dL/dt (s), mm/s 73£12 43120 41£16 <0.001 <0.01 0.94
dL/dt (d), mm/s 77420 2315 42114 <0.001 <0.001 0.01

LV CDR - the final diastolic volume of the left ventricle; LV CSR - the final systolic volume of the left ventricle;
LV LV - the ejection fraction of the left ventricle; BTR VTL]J - peak pressure gradient in the outflow tract of the left ventricle;
dL / dt - the rate of change of the long axis in the systole (s) and diastole (d).

Surgical correction of the LVOT obstruction decreases
the mean pressure gradient (see Table 1) and increases
LVEDV and LVESV. LVEF decreased by a mean of 16% and
remained normal. The rate of change of the long LV axis
(dL/dt) in diastole became significantly higher after surgery.

The decrease gradient in the LVOT is accompanied
by the recovery and normalization of the systolic ejection
pattern. Blood flow after surgery is almost the same as
in a healthy person (Figure S, A~B’). Surgical treatment
did not immediately result in the complete recovery of
intraventricular hemodynamics in some cases. Thus,
normalization of myocardial contraction velocities (V)
indirectly characterizes the positive energy process in the
myocardium, while taking into account decreased pressure
gradient and normalization of blood flows.

The estimation of intracardiac pressure gradients in
patients with OHCMP is of particular interest. Altered

spatial geometry, smaller LV cavity, papillary muscle
hypertrophy, severe disorders of segmental contraction and
relaxation result in changes in the formation and distribution
of intraventricular blood flows and pressure gradients within
the LV cavity. The elimination of pressure gradient in LVOT
improves the conditions for SE.

It is interesting to note that patients with OHCMP
have several apex-to-base IVPG levels during isovolumic
stress. The normal pressure gradient is not more than
0.2 mmHg, and 2.5-4 mmHg in patients with OHCMP.
After myectomy, the peak gradient between LV and aorta
decreased significantly, and IVPG decreased simultaneously
by a magnitude of 3 when compared to the baseline. During
maximum ejection, IVPG normally is less than 0.5 mmHg
and more than 2.5 mmHg in patients with OHCMP. The
elimination of LVOT hypertrophy is accompanied by
reduced IVPG and the elimination of additional turbulent

Figure 4. Myocardial contraction velocities (mm/s) in the basal (V,), middle (V,), and apical (V,) segments of the inter-
ventricular septum in healthy persons and patients with obstructive hypertrophic cardiomyopathy before and after surgery
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Figure 5. Color mapping of intraventricular pressure gradients superimposed by intracardiac blood flow vectors
(green arrows) in patients with OHCMP during systole before surgery: R wave (A), the beginning of T wave (B),
the end of T wave (C); on day 7 after surgery: R wave (A’), the beginning of T wave (B’), the end of T wave (C’)

To the left is the pressure gradient scale in mmHg, to the right is the blood flow velocity scale.
OHCMP, obstructive hypertrophic cardiomyopathy.

blood flows. Thus, during maximum ejection, IVPG was
not more than 0.6-0.9 mmHg, which can be considered as a
criterion for the adequacy of the surgery.

Severe IVPG occurs during blood ejection between the
narrowed outflow tract and the rest of the LV. Measurements
of apex-to-base intraventricular pressure gradient revealed
an increase during the maximum ejection and in diastole
(Figure 6).

Greatest IVPG is observed during maximum ejection,
mainly in the mid-LV. After adequate correction, the apex-
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to-base pressure gradient is almost normal at all levels during
the cardiac cycle.

Discussion

OHCMP is characterized by IVS thickening and restricted
motility, reduction of the LV cavity, and enlargement of the
left atrium [14, 15]. Movement of the mitral valve (MV)
anterior leaflet results in a significant acceleration of blood
flow in the LVOT. This is accompanied by an increased
pressure gradient and mitral regurgitation grade 1-2. The
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pathological motion of the MV anterior leaflet toward the
IVS is aggravated by the abnormal arrangement of papillary
muscles which is unable to keep the MV leaflets closed.
A relatively long closure of the anterior leaflet with the IVS
results in IVPG, and its magnitude characterizes the degree
of LVOT obstruction. In severe cases, IVPG can reach 80-
100 mmHg. The three main factors influencing the magnitude
of pressure gradient and the degree of LVOT obstruction are
LV myocardial contractility, pre- and post-load dimension.
Thus, the anterior systolic motion of the anterior MV leaflet
in OHCMP is caused by an imbalance between the anatomy,
blood flow velocity and pressure gradient in the LV cavity.
The imbalance between blood flow and pressure gradient
is certainly associated with structural changes in MV and
papillary muscles, which were observed in almost 95-100%
of patients with OHCMP. When the pathology was corrected,
LVOT obstruction was eliminated, and mitral regurgitation
was corrected, and IVPG approached normal values (see
Figure 6). The normalization of the systolic and diastolic
myocardial velocity can be considered a favorable prognostic
sign of the recovery of myocardial function and the adequacy
of the correction.

The higher the LV contractility, the greater the linear
velocity of the blood flow in the narrowed part of the LVOT.
These observations show that myocardial hypertrophy and
LV remodeling in OHCMP differ from other pathologies
accompanied by myocardial hypertrophy (hypertonic heart
disease, aortic stenosis).

Turbulent blood flows in the heart cavities are essential
motion elements to ensure dynamic balance between
myocardial stress and arterial pressure during the cardiac
cycle [S, 16]. The vector characteristics of the blood flow
distribution in the cavities of the heart allow blood flow
velocity directly in different parts of the LV to be estimated
and calculated. Velocity vectors have several directions:
transverse, longitudinal, and oblique relative to the blood
flow. There are two forms of motion in the LV: a high-
velocity internal flow and a lower-velocity external flow,

which helically envelope the internal flow toward and from
the apex. These flows determine the contraction and filling
forces of the LV. In healthy people the flow is clockwise. This
is accompanied by a change in the ventricular geometry with
an even distribution of myocardial deformations. The LV
remodeling involves altered geometry and disrupted ejection
dynamics and diastole.

The LVOT muscle block, which increases as the
myocardium contracts, causes a change in direction in blood
flow. The main part is directed from the mid-LV along the
anterior mitral leaflet. Before the surgery, there is a high-
velocity turbulent flow in the LVOT area.

When studying changes in the LV pressure gradient
during the cardiac cycle, we observed a mosaic pattern of
pressure gradient over virtually the entire cycle. However, this
is more likely during the ventricular filling phase. For example,
2D echocardiography showed that the cross-sectional LVOT
area at the beginning of systole was less than 3-4 cm? in 95%
of patients with OHCMP and the mean pressure gradient
was 69 mm Hg. Imaging of the intraventricular blood flows
and apex-to-base pressure gradients showed that myocardial
contraction velocities, attributable to its deformation, are
associated with changes in the heart’s anatomical structures
and influence the formation and direction of the flow.

The use of imaging information relating to myocardial
motion over time provides new quantitative characteristics
which reflect the heart’s condition in a particular patient.
Changes in turbulent blood flow in the cardiac cavities can
be characteristic of various pathophysiological processes,
especially, systolic and diastolic changes in the deformation
[16-18]. This effect is essential for the reproduction and
understanding of the processes which occur in both normal
and abnormal conditions. From a scientific and practical
point of view, it was necessary to understand and determine
whether the turbulent flow actually occurs in the LV in
patients with OHCMP, in what period of the heart cycle, and
if so, whether it is possible to diagnose the probable level of
occurrence of an additional pressure gradient in the cavity.

Figure 6. Intraventricular pressure gradient in healthy persons and patients with hypertrophic cardiomyopathy before
and after surgery during isovolumic stress, maximum ejection, and diastole (A), apical, middle, and basal pressure gradients (B)
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The maximum intensity is observed during the ejection phase.
After the stage of the lower blood flow velocity the stage
of rapid increase in the diastolic velocity occurs, with the
maximum reached at the base. It is not clear yet what causes
this effect, and perhaps myocardial fibrosis plays a particular
role. The issues of myocardial deformation in hypertrophy
in patients with valvular heart disease, hypertensive heart
disease, and hypertrophic cardiomyopathy are currently a
matter of extensive discussion in the literature [11]. The
relationship between myocardial fibrosis and deformation
is addressed in the literature, and is based on the results of
echocardiography and magnetic resonance imaging.

Reduced myocardial deformation was shown to
be characteristic of the pathological myocardium [11].
Indeed, some patients had no improvements in the early
posto-perative period. This may be due to the fact that the
longitudinal deformation in these patients is associated
with pressure gradient and also depends on some factors,
such as damaged cardiomyocytes. Myocardial deformation
undoubtedly largely determines the function of the
myocardium and, particularly, affects the velocities and
turbulence of blood flow in the cardiac cavities.

Surgical correction of the pathology normalized the
systolic and diastolic functions of the myocardium by
improving perfusion and normalizing coronary circulation
due to lower LV pressure [4, 18].

Studies to assess the efficacy of surgical correction
of obstructive hypertrophy must continue, first of all, to
determine pressure gradients and blood flows and their
correlations, since they are the main factors of maintaining
SE and relieving LV from overload. This, in turn, will
contribute to the development of new surgical treatments in
OHCMP.

The presence of turbulence determines the potential
activity, which allows it to be evaluated qualitatively.
Based on the findings of blood flow and IVPG in the LV, it
should be noted that, in patients with OHCMP, these two
processes are inextricably linked and are virtually predictors
of surgical treatment efficacy. Other authors obtained the
same results after the elimination of LVOT obstruction [14,
17]. Decreasing the apex-to-base gradient in the LV results
in the normalization of blood flow and the improvement of

intracardiac hemodynamics. The LVOT pressure gradient
after surgery does not exceed 15-20 mmHg. The myocardial
function can be assessed by systolic and end-systolic
myocardial tension, changes in the contraction velocity and
stress, ventricular blood flows, and apex-to-base pressure
gradient.

However, patients with OHCMP need dynamic
observation and the assessment of blood flow and IVPG after
surgery. The quantitative assessment of pressure gradients
and vortex blood flows shown in this way, allowed for surgical
correction of the pathology in patients with OHCMP in the
clinical setting to be evaluated.

Conclusion

Intraventricular pressure gradient directly affects the
systolic and diastolic function of the myocardium. The
reduction of the pressure gradient in the left ventricle outflow
tract and the minimization of the apex-to-base pressure
gradient in the left ventricular cavity is one of the indicators
to measure the efficacy of surgical correction of obstructive
hypertrophic cardiomyopathy. The elimination of hypertrophy
and the normalization of mitral valve function contribute to
the normalization of intraventricular blood flows. Also, the
values of myocardial contraction velocity during the cardiac
cycle reflect early changes in the left ventricular function in a
reasonably objective fashion. The clinical use of the evaluation
of the outcomes of the surgical treatment of obstructive
hypertrophic cardiomyopathy is based on a new diagnostic
algorithm of simultaneous recording of myocardial contraction
velocities, intraventricular pressure gradient, and blood flows
according to echocardiography.
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